Suppr超能文献

生物菲茨休-纳古莫神经元的超低功耗电子模拟

Ultralow Power Electronic Analog of a Biological Fitzhugh-Nagumo Neuron.

作者信息

Ahsan Ragib, Wu Zezhi, Jalal Seyedeh Atiyeh Abbasi, Kapadia Rehan

机构信息

Department of Electrical and Computer Engineering, University of Southern California, Los Angeles 90089-0001, United States.

出版信息

ACS Omega. 2024 Apr 9;9(16):18062-18071. doi: 10.1021/acsomega.3c09936. eCollection 2024 Apr 23.

Abstract

Here, we introduce an electronic circuit that mimics the functionality of a biological spiking neuron following the Fitzhugh-Nagumo (FN) model. The circuit consists of a tunnel diode that exhibits negative differential resistance (NDR) and an active inductive element implemented by a single MOSFET. The FN neuron converts a DC voltage excitation into voltage spikes analogous to biological action potentials. We predict an energy cost of 2 aJ/cycle through detailed simulation and modeling for these FN neurons. Such an FN neuron is CMOS compatible and enables ultralow power oscillatory and spiking neural network hardware. We demonstrate that FN neurons can be used for oscillator-based computing in a coupled oscillator network to form an oscillator Ising machine (OIM) that can solve computationally hard NP-complete max-cut problems while showing robustness toward process variations.

摘要

在此,我们介绍一种电子电路,它模仿遵循菲茨休 - 纳古莫(FN)模型的生物脉冲神经元的功能。该电路由一个呈现负微分电阻(NDR)的隧道二极管和一个由单个MOSFET实现的有源电感元件组成。FN神经元将直流电压激励转换为类似于生物动作电位的电压脉冲。通过对这些FN神经元进行详细的模拟和建模,我们预测每个周期的能量消耗为2阿焦耳。这种FN神经元与CMOS兼容,并能实现超低功耗的振荡和脉冲神经网络硬件。我们证明,FN神经元可用于耦合振荡器网络中基于振荡器的计算,以形成一个振荡器伊辛机(OIM),该机器能够解决计算困难的NP完全最大割问题,同时对工艺变化具有鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b9/11044232/649fce438e8e/ao3c09936_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验