Suppr超能文献

基于强化学习的新冠肺炎决策支持系统

Reinforcement learning-based decision support system for COVID-19.

作者信息

Padmanabhan Regina, Meskin Nader, Khattab Tamer, Shraim Mujahed, Al-Hitmi Mohammed

机构信息

Department of Electrical Engineering, Qatar University, Qatar.

Department of Public Health, College of Health Sciences, QU Health, Qatar University, Qatar.

出版信息

Biomed Signal Process Control. 2021 Jul;68:102676. doi: 10.1016/j.bspc.2021.102676. Epub 2021 Apr 27.

Abstract

Globally, informed decision on the most effective set of restrictions for the containment of COVID-19 has been the subject of intense debates. There is a significant need for a structured dynamic framework to model and evaluate different intervention scenarios and how they perform under different national characteristics and constraints. This work proposes a novel optimal decision support framework capable of incorporating different interventions to minimize the impact of widely spread respiratory infectious pandemics, including the recent COVID-19, by taking into account the pandemic's characteristics, the healthcare system parameters, and the socio-economic aspects of the community. The theoretical framework underpinning this work involves the use of a reinforcement learning-based agent to derive constrained optimal policies for tuning a closed-loop control model of the disease transmission dynamics.

摘要

在全球范围内,就控制新冠疫情最有效的一系列限制措施做出明智决策一直是激烈辩论的主题。迫切需要一个结构化的动态框架来模拟和评估不同的干预情景,以及它们在不同国家特征和限制条件下的表现。这项工作提出了一个新颖的最优决策支持框架,该框架能够纳入不同的干预措施,通过考虑疫情特征、医疗系统参数和社区的社会经济方面,将包括近期新冠疫情在内的广泛传播的呼吸道传染病大流行的影响降至最低。支撑这项工作的理论框架涉及使用基于强化学习的智能体来推导约束最优策略,以调整疾病传播动态的闭环控制模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f96a/8079127/b18f6df5149e/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验