Suppr超能文献

基于强化学习的新冠肺炎资源分配框架

Reinforcement learning based framework for COVID-19 resource allocation.

作者信息

Zong Kai, Luo Cuicui

机构信息

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China.

International College, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Comput Ind Eng. 2022 May;167:107960. doi: 10.1016/j.cie.2022.107960. Epub 2022 Jan 29.

Abstract

In this paper, a reinforcement learning based framework is developed for COVID-19 resource allocation. We first construct an agent-based epidemic environment to model the transmission dynamics in multiple states. Then, a multi-agent reinforcement-learning algorithm is proposed based on the time-varying properties of the environment, and the performance of the algorithm is compared with other algorithms. According to the age distribution of populations and their economic conditions, the optimal lockdown resource allocation strategies of Arizona, California, Nevada, and Utah in the United States are determined using the proposed reinforcement-learning algorithm. Experimental results show that the framework can adopt more flexible resource allocation strategies and help decision makers to determine the optimal deployment of limited resources in infection prevention.

摘要

本文针对新冠疫情资源分配问题,开发了一种基于强化学习的框架。我们首先构建了一个基于智能体的疫情环境,对多个州的传播动态进行建模。然后,基于环境的时变特性提出了一种多智能体强化学习算法,并将该算法的性能与其他算法进行了比较。根据人口的年龄分布及其经济状况,利用所提出的强化学习算法确定了美国亚利桑那州、加利福尼亚州、内华达州和犹他州的最优封锁资源分配策略。实验结果表明,该框架能够采用更灵活的资源分配策略,帮助决策者确定有限资源在感染预防方面的最优部署。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf57/8800507/20e82f00072e/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验