Rawat Bhanu Pratap Singh, Jagannatha Abhyuday, Liu Feifan, Yu Hong
College of Information and Computer Science, University of Massachusetts Amherst.
University of Massachusetts Medical School, Worcester, MA.
AMIA Annu Symp Proc. 2021 Jan 25;2020:1041-1049. eCollection 2020.
Clinical judgment studies are an integral part of drug safety surveillance and pharmacovigilance frameworks. They help quantify the causal relationship between medication and its adverse drug reactions (ADRs). To conduct such studies, physicians need to review patients' charts manually to answer Naranjo questionnaire. In this paper, we propose a methodology to automatically infer causal relations from patients' discharge summaries by combining the capabilities of deep learning and statistical learning models. We use Bidirectional Encoder Representations from Transformers (BERT) to extract relevant paragraphs for each Naranjo question and then use a statistical learning model such as logistic regression to predict the Naranjo score and the causal relation between the medication and an ADR. Our methodology achieves a macro-averaged f1-score of 0.50 and weighted f1-score of 0.63.
临床判断研究是药物安全监测和药物警戒框架的一个组成部分。它们有助于量化药物与其药物不良反应(ADR)之间的因果关系。为了开展此类研究,医生需要手动查阅患者病历以回答纳朗霍问卷。在本文中,我们提出了一种方法,通过结合深度学习和统计学习模型的能力,从患者出院小结中自动推断因果关系。我们使用来自变换器的双向编码器表征(BERT)为每个纳朗霍问题提取相关段落,然后使用逻辑回归等统计学习模型来预测纳朗霍评分以及药物与ADR之间的因果关系。我们的方法实现了0.50的宏观平均F1分数和0.63的加权F1分数。