Suppr超能文献

双能CT定量参数在乳腺癌良恶性病变鉴别及组织病理学和分子亚型预测中的应用

Dual-energy CT quantitative parameters for the differentiation of benign from malignant lesions and the prediction of histopathological and molecular subtypes in breast cancer.

作者信息

Wang Xiaoxia, Liu Daihong, Zeng Xiangfei, Jiang Shixi, Li Lan, Yu Tao, Zhang Jiuquan

机构信息

Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.

出版信息

Quant Imaging Med Surg. 2021 May;11(5):1946-1957. doi: 10.21037/qims-20-825.

Abstract

BACKGROUND

Dual-energy computed tomography (DECT) is widely used to characterize and differentiate tumors. However, data regarding its diagnostic performance for the characterization of breast tumors are limited. In this study, we assessed the diagnostic performance of quantitative parameters derived from DECT in differentiating benign from malignant lesions and predicting histopathological and molecular subtypes in patients with breast cancer.

METHODS

Dual-phase contrast-enhanced DECT of the thorax was performed on participants with breast tumors. Conventional CT attenuation and DECT quantitative parameters, including normalized iodine concentration (NIC), the slope of the spectral Hounsfield unit curve (λ), and normalized effective atomic number (nZ), were obtained and compared between benign and malignant lesions, invasive non-special carcinoma, and ductal carcinoma in situ (DCIS), and among the four molecular subtypes of breast cancer. The diagnostic performance of the quantitative parameters was analyzed using receiver operating characteristic (ROC) curves.

RESULTS

This study included 130 participants with 161 breast lesions (44 benign and 117 malignant). In the arterial and venous phase, NICs, λ, nZ, and attenuation were higher in malignant lesions than benign lesions (all P<0.001). The venous phase λ had the best differential diagnostic capability, with an area under the curve (AUC) of 0.90, a sensitivity of 84.1% (37 of 44), a specificity of 86.3% (101 of 117), and an accuracy of 85.7% (138 of 161). The NICs in the arterial and venous phases were higher in invasive non-special carcinoma than DCIS (both P<0.001). In terms of diagnostic performance, NIC in the venous phase had an AUC of 0.77, a sensitivity of 75.0% (12 of 16), a specificity of 81.2% (82 of 101), and an accuracy of 80.3% (94 of 117). The luminal A subtype produced a lower venous phase NIC, and arterial and venous phase nZ than the non-luminal A subtype (AUC of 0.91 for the combination of these three parameters).

CONCLUSIONS

Dual-energy CT quantitative parameters are a feasible and valuable noninvasive means of differentiating between benign and malignant lesions, and predicting histopathological and molecular subtypes in patients with breast cancer.

摘要

背景

双能量计算机断层扫描(DECT)被广泛用于肿瘤的特征描述和鉴别。然而,关于其对乳腺肿瘤特征描述的诊断性能的数据有限。在本研究中,我们评估了从DECT得出的定量参数在区分乳腺良性和恶性病变以及预测乳腺癌患者组织病理学和分子亚型方面的诊断性能。

方法

对患有乳腺肿瘤的参与者进行胸部双期对比增强DECT检查。获取常规CT衰减值和DECT定量参数,包括归一化碘浓度(NIC)、光谱亨氏单位曲线斜率(λ)和归一化有效原子序数(nZ),并在良性和恶性病变、浸润性非特殊癌和原位导管癌(DCIS)之间以及乳腺癌的四种分子亚型之间进行比较。使用受试者操作特征(ROC)曲线分析定量参数的诊断性能。

结果

本研究纳入了130名参与者,共161个乳腺病变(44个良性和117个恶性)。在动脉期和静脉期,恶性病变的NIC、λ、nZ和衰减值均高于良性病变(所有P<0.001)。静脉期λ具有最佳的鉴别诊断能力,曲线下面积(AUC)为0.90,灵敏度为84.1%(44个中的37个),特异度为86.3%(117个中的101个),准确率为85.7%(161个中的138个)。浸润性非特殊癌的动脉期和静脉期NIC高于DCIS(均P<0.001)。在诊断性能方面,静脉期NIC的AUC为0.77,灵敏度为75.0%(16个中的12个),特异度为81.2%(101个中的82个),准确率为80.3%(117个中的94个)。管腔A型产生的静脉期NIC以及动脉期和静脉期nZ均低于非管腔A型(这三个参数组合的AUC为0.91)。

结论

双能量CT定量参数是区分乳腺良性和恶性病变以及预测乳腺癌患者组织病理学和分子亚型的一种可行且有价值的非侵入性方法。

相似文献

引用本文的文献

2
Dual-Energy CT in Breast Cancer: Current Applications and Future Outlooks.双能CT在乳腺癌中的应用现状与未来展望
Precis Radiat Oncol. 2023 Dec 1;7(4):286-294. doi: 10.1002/pro6.1213. eCollection 2023 Dec.

本文引用的文献

7
Machine learning in breast MRI.乳腺磁共振成像中的机器学习
J Magn Reson Imaging. 2020 Oct;52(4):998-1018. doi: 10.1002/jmri.26852. Epub 2019 Jul 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验