Suppr超能文献

乳腺磁共振成像中的机器学习

Machine learning in breast MRI.

作者信息

Reig Beatriu, Heacock Laura, Geras Krzysztof J, Moy Linda

机构信息

The Department of Radiology, New York University School of Medicine, New York, New York, USA.

Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.

出版信息

J Magn Reson Imaging. 2020 Oct;52(4):998-1018. doi: 10.1002/jmri.26852. Epub 2019 Jul 5.

Abstract

Machine-learning techniques have led to remarkable advances in data extraction and analysis of medical imaging. Applications of machine learning to breast MRI continue to expand rapidly as increasingly accurate 3D breast and lesion segmentation allows the combination of radiologist-level interpretation (eg, BI-RADS lexicon), data from advanced multiparametric imaging techniques, and patient-level data such as genetic risk markers. Advances in breast MRI feature extraction have led to rapid dataset analysis, which offers promise in large pooled multiinstitutional data analysis. The object of this review is to provide an overview of machine-learning and deep-learning techniques for breast MRI, including supervised and unsupervised methods, anatomic breast segmentation, and lesion segmentation. Finally, it explores the role of machine learning, current limitations, and future applications to texture analysis, radiomics, and radiogenomics. Level of Evidence: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:998-1018.

摘要

机器学习技术已在医学成像的数据提取和分析方面取得了显著进展。随着越来越精确的三维乳腺和病变分割技术的出现,机器学习在乳腺磁共振成像(MRI)中的应用继续迅速扩展,这使得放射科医生水平的解读(如BI-RADS词典)、来自先进多参数成像技术的数据以及诸如遗传风险标志物等患者层面的数据得以结合。乳腺MRI特征提取的进展已实现了快速的数据集分析,这在大型多机构汇总数据分析中具有前景。本综述的目的是概述用于乳腺MRI的机器学习和深度学习技术,包括监督和无监督方法、乳腺解剖分割和病变分割。最后,探讨机器学习的作用、当前局限性以及其在纹理分析、放射组学和放射基因组学方面的未来应用。证据水平:3 技术效能阶段:2 《磁共振成像杂志》2019年。《磁共振成像杂志》2020年;52:998 - 1018。

相似文献

1
Machine learning in breast MRI.
J Magn Reson Imaging. 2020 Oct;52(4):998-1018. doi: 10.1002/jmri.26852. Epub 2019 Jul 5.
2
Artificial intelligence in the interpretation of breast cancer on MRI.
J Magn Reson Imaging. 2020 May;51(5):1310-1324. doi: 10.1002/jmri.26878. Epub 2019 Jul 25.
4
Multi-planar 3D breast segmentation in MRI via deep convolutional neural networks.
Artif Intell Med. 2020 Mar;103:101781. doi: 10.1016/j.artmed.2019.101781. Epub 2019 Dec 23.
5
MRI radiogenomics for intelligent diagnosis of breast tumors and accurate prediction of neoadjuvant chemotherapy responses-a review.
Comput Methods Programs Biomed. 2022 Feb;214:106510. doi: 10.1016/j.cmpb.2021.106510. Epub 2021 Nov 11.
6
Characterization of Adrenal Lesions on Unenhanced MRI Using Texture Analysis: A Machine-Learning Approach.
J Magn Reson Imaging. 2018 Jul;48(1):198-204. doi: 10.1002/jmri.25954. Epub 2018 Jan 17.
7
Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
Eur Radiol. 2020 Aug;30(8):4595-4605. doi: 10.1007/s00330-020-06768-y. Epub 2020 Mar 28.
10
Radiomics strategy for glioma grading using texture features from multiparametric MRI.
J Magn Reson Imaging. 2018 Dec;48(6):1518-1528. doi: 10.1002/jmri.26010. Epub 2018 Mar 23.

引用本文的文献

1
A Priori Prediction of Breast Cancer Response to Neoadjuvant Chemotherapy Using CT Radiomics.
Cancers (Basel). 2025 Aug 20;17(16):2706. doi: 10.3390/cancers17162706.
2
Scoping review: (Bio)markers for the prognostication of breast cancer recurrence.
BMC Cancer. 2025 Jul 1;25(1):1081. doi: 10.1186/s12885-025-14515-z.
7
Diagnosis of clear cell renal cell carcinoma via a deep learning model with whole-slide images.
Ther Adv Urol. 2025 May 3;17:17562872251333865. doi: 10.1177/17562872251333865. eCollection 2025 Jan-Dec.
10
Harnessing the power of machine learning into tissue engineering: current progress and future prospects.
Burns Trauma. 2024 Dec 6;12:tkae053. doi: 10.1093/burnst/tkae053. eCollection 2024.

本文引用的文献

1
Background parenchymal enhancement assessment: Inter- and intra-rater reliability across breast MRI sequences.
Eur J Radiol. 2019 May;114:57-61. doi: 10.1016/j.ejrad.2019.02.036. Epub 2019 Feb 27.
3
Detection and characterization of MRI breast lesions using deep learning.
Diagn Interv Imaging. 2019 Apr;100(4):219-225. doi: 10.1016/j.diii.2019.02.008. Epub 2019 Mar 26.
4
Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images.
J Magn Reson Imaging. 2019 Oct;50(4):1144-1151. doi: 10.1002/jmri.26721. Epub 2019 Mar 29.
5
Characterization of Sub-1 cm Breast Lesions Using Radiomics Analysis.
J Magn Reson Imaging. 2019 Nov;50(5):1468-1477. doi: 10.1002/jmri.26732. Epub 2019 Mar 27.
6
Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups.
Nature. 2019 Mar;567(7748):399-404. doi: 10.1038/s41586-019-1007-8. Epub 2019 Mar 13.
9
A deep learning framework for efficient analysis of breast volume and fibroglandular tissue using MR data with strong artifacts.
Int J Comput Assist Radiol Surg. 2019 Oct;14(10):1627-1633. doi: 10.1007/s11548-019-01928-y. Epub 2019 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验