文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

乳腺磁共振成像中的机器学习

Machine learning in breast MRI.

作者信息

Reig Beatriu, Heacock Laura, Geras Krzysztof J, Moy Linda

机构信息

The Department of Radiology, New York University School of Medicine, New York, New York, USA.

Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.

出版信息

J Magn Reson Imaging. 2020 Oct;52(4):998-1018. doi: 10.1002/jmri.26852. Epub 2019 Jul 5.


DOI:10.1002/jmri.26852
PMID:31276247
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7085409/
Abstract

Machine-learning techniques have led to remarkable advances in data extraction and analysis of medical imaging. Applications of machine learning to breast MRI continue to expand rapidly as increasingly accurate 3D breast and lesion segmentation allows the combination of radiologist-level interpretation (eg, BI-RADS lexicon), data from advanced multiparametric imaging techniques, and patient-level data such as genetic risk markers. Advances in breast MRI feature extraction have led to rapid dataset analysis, which offers promise in large pooled multiinstitutional data analysis. The object of this review is to provide an overview of machine-learning and deep-learning techniques for breast MRI, including supervised and unsupervised methods, anatomic breast segmentation, and lesion segmentation. Finally, it explores the role of machine learning, current limitations, and future applications to texture analysis, radiomics, and radiogenomics. Level of Evidence: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:998-1018.

摘要

机器学习技术已在医学成像的数据提取和分析方面取得了显著进展。随着越来越精确的三维乳腺和病变分割技术的出现,机器学习在乳腺磁共振成像(MRI)中的应用继续迅速扩展,这使得放射科医生水平的解读(如BI-RADS词典)、来自先进多参数成像技术的数据以及诸如遗传风险标志物等患者层面的数据得以结合。乳腺MRI特征提取的进展已实现了快速的数据集分析,这在大型多机构汇总数据分析中具有前景。本综述的目的是概述用于乳腺MRI的机器学习和深度学习技术,包括监督和无监督方法、乳腺解剖分割和病变分割。最后,探讨机器学习的作用、当前局限性以及其在纹理分析、放射组学和放射基因组学方面的未来应用。证据水平:3 技术效能阶段:2 《磁共振成像杂志》2019年。《磁共振成像杂志》2020年;52:998 - 1018。

相似文献

[1]
Machine learning in breast MRI.

J Magn Reson Imaging. 2020-10

[2]
Artificial intelligence in the interpretation of breast cancer on MRI.

J Magn Reson Imaging. 2020-5

[3]
Improved characterization of sub-centimeter enhancing breast masses on MRI with radiomics and machine learning in BRCA mutation carriers.

Eur Radiol. 2020-12

[4]
Multi-planar 3D breast segmentation in MRI via deep convolutional neural networks.

Artif Intell Med. 2019-12-23

[5]
MRI radiogenomics for intelligent diagnosis of breast tumors and accurate prediction of neoadjuvant chemotherapy responses-a review.

Comput Methods Programs Biomed. 2022-2

[6]
Characterization of Adrenal Lesions on Unenhanced MRI Using Texture Analysis: A Machine-Learning Approach.

J Magn Reson Imaging. 2018-1-17

[7]
Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.

Eur Radiol. 2020-3-28

[8]
Machine learning for multi-parametric breast MRI: radiomics-based approaches for lesion classification.

Phys Med Biol. 2022-7-20

[9]
Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.

Invest Radiol. 2019-2

[10]
Radiomics strategy for glioma grading using texture features from multiparametric MRI.

J Magn Reson Imaging. 2018-3-23

引用本文的文献

[1]
A Priori Prediction of Breast Cancer Response to Neoadjuvant Chemotherapy Using CT Radiomics.

Cancers (Basel). 2025-8-20

[2]
Scoping review: (Bio)markers for the prognostication of breast cancer recurrence.

BMC Cancer. 2025-7-1

[3]
3.0 T multi-parametric MRI combined with clinical features improve malignancy prediction of BI-RADS 4 lesions and preoperative prediction of Nottingham Prognostic Index.

Eur J Radiol Open. 2025-6-11

[4]
Diagnostic accuracy of machine learning-based magnetic resonance imaging models in breast cancer classification: a systematic review and meta-analysis.

World J Surg Oncol. 2025-6-11

[5]
Harnessing machine learning to predict and prevent proximal junctional kyphosis and failure in adult spinal deformity surgery: A systematic review.

Brain Spine. 2025-5-5

[6]
Pre-Treatment Prediction of Breast Cancer Response to Neoadjuvant Chemotherapy Using Intratumoral and Peritumoral Radiomics from T2-Weighted and Contrast-Enhanced T1-Weighted MRI.

Cancers (Basel). 2025-4-30

[7]
Diagnosis of clear cell renal cell carcinoma via a deep learning model with whole-slide images.

Ther Adv Urol. 2025-5-3

[8]
Preoperative prediction of microvascular invasion and relapse-free survival in hepatocellular Carcinoma ≥3 cm using CT radiomics: Development and external validation.

BMC Med Imaging. 2025-5-1

[9]
Clinical Applications of Artificial Intelligence (AI) in Human Cancer: Is It Time to Update the Diagnostic and Predictive Models in Managing Hepatocellular Carcinoma (HCC)?

Diagnostics (Basel). 2025-1-22

[10]
Harnessing the power of machine learning into tissue engineering: current progress and future prospects.

Burns Trauma. 2024-12-6

本文引用的文献

[1]
Background parenchymal enhancement assessment: Inter- and intra-rater reliability across breast MRI sequences.

Eur J Radiol. 2019-2-27

[2]
Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer.

JAMA Netw Open. 2019-4-5

[3]
Detection and characterization of MRI breast lesions using deep learning.

Diagn Interv Imaging. 2019-3-26

[4]
Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images.

J Magn Reson Imaging. 2019-3-29

[5]
Characterization of Sub-1 cm Breast Lesions Using Radiomics Analysis.

J Magn Reson Imaging. 2019-3-27

[6]
Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups.

Nature. 2019-3-13

[7]
Early Prediction of Breast Cancer Therapy Response using Multiresolution Fractal Analysis of DCE-MRI Parametric Maps.

Tomography. 2019-3

[8]
Radiomics of Multiparametric MRI for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer: A Multicenter Study.

Clin Cancer Res. 2019-3-6

[9]
A deep learning framework for efficient analysis of breast volume and fibroglandular tissue using MR data with strong artifacts.

Int J Comput Assist Radiol Surg. 2019-3-6

[10]
Automatic Breast and Fibroglandular Tissue Segmentation in Breast MRI Using Deep Learning by a Fully-Convolutional Residual Neural Network U-Net.

Acad Radiol. 2019-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索