Suppr超能文献

双能CT在乳腺癌中的应用现状与未来展望

Dual-Energy CT in Breast Cancer: Current Applications and Future Outlooks.

作者信息

Guo Shaolan, Liu Tianye, Qu Guobin, Xu Jian, Liu Qingzeng, Zhao Qian, Bi Zhao, Li Wanhu, Zhu Jian

机构信息

Shandong First Medical University and Shandong Academy of Medical Sciences Jinan P. R. China.

Department of Radiation Oncology Physics and Technology Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan P. R. China.

出版信息

Precis Radiat Oncol. 2023 Dec 1;7(4):286-294. doi: 10.1002/pro6.1213. eCollection 2023 Dec.

Abstract

Breast cancer is the most prevalent cancerous tumor in women, characterized by different subtypes and varying responses to treatment. The continued evolution of breast cancer diagnosis and management has resulted in a transition from a one-size-fits-all approach to a new era of personalized treatment plans. Therefore, it is essential to accurately identify the biological characteristics of breast tissue in order to minimize unnecessary biopsies of benign lesions and improve the overall clinical process, leading to reduced expenses and complications associated with invasive biopsy procedures. Challenges for future research include finding ways to predict the response of breast cancer patients to adjuvant systemic treatment. Dual-energy CT (DECT) is a new imaging technology integrating functional imaging and molecular imaging. Over the past decade, DECT has gained relevancy, especially in oncological radiology. This article proposed a literature review of the application and research status of DECT in breast cancer treatment strategy determination and prognosis prediction.

摘要

乳腺癌是女性中最常见的癌性肿瘤,具有不同的亚型以及对治疗的不同反应。乳腺癌诊断和治疗方法的不断发展,已导致从一刀切的方法过渡到个性化治疗方案的新时代。因此,准确识别乳腺组织的生物学特征至关重要,这样可以尽量减少对良性病变进行不必要的活检,并改善整个临床过程,从而降低与侵入性活检程序相关的费用和并发症。未来研究面临的挑战包括找到预测乳腺癌患者对辅助全身治疗反应的方法。双能CT(DECT)是一种将功能成像和分子成像相结合的新型成像技术。在过去十年中,DECT变得越来越重要,尤其是在肿瘤放射学领域。本文对DECT在乳腺癌治疗策略确定和预后预测中的应用及研究现状进行了文献综述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7a/11935073/6d4c90da3c40/PRO6-7-286-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验