Suppr超能文献

用于基于MRI图像检测阿尔茨海默病的卷积神经网络。

Convolutional neural networks for Alzheimer's disease detection on MRI images.

作者信息

Ebrahimi Amir, Luo Suhuai

机构信息

The University of Newcastle, School of Electrical Engineering and Computing, Callaghan, New South Wales, Australia.

出版信息

J Med Imaging (Bellingham). 2021 Mar;8(2):024503. doi: 10.1117/1.JMI.8.2.024503. Epub 2021 Apr 29.

Abstract

Detection of Alzheimer's disease (AD) on magnetic resonance imaging (MRI) using convolutional neural networks (CNNs), which is useful for detecting AD in its preliminary states. Our study implements and compares several deep models and configurations, including two-dimensional (2D) and three-dimensional (3D) CNNs and recurrent neural networks (RNNs). To use a 2D CNN on 3D MRI volumes, each MRI scan is split into 2D slices, neglecting the connection among 2D image slices in an MRI volume. Instead, a CNN model could be followed by an RNN in a way that the model of 2D CNN + RNN can understand the connection among sequences of 2D image slices for an MRI. The issue is that the feature extraction step in the 2D CNN is independent of classification in the RNN. To tackle this, 3D CNNs can be employed instead of 2D CNNs to make voxel-based decisions. Our study's main contribution is to introduce transfer learning from a dataset of 2D images to 3D CNNs. The results on our MRI dataset indicate that sequence-based decisions improve the accuracy of slice-based decisions by 2% in classifying AD patients from healthy subjects. Also the 3D voxel-based method with transfer learning outperforms the other methods with 96.88% accuracy, 100% sensitivity, and 94.12% specificity. Several implementations and experiments using CNNs on MRI scans for AD detection demonstrated that the voxel-based method with transfer learning from ImageNet to MRI datasets using 3D CNNs considerably improved the results compared with the others.

摘要

使用卷积神经网络(CNN)在磁共振成像(MRI)上检测阿尔茨海默病(AD),这对于在AD的早期阶段进行检测很有用。我们的研究实现并比较了几种深度模型和配置,包括二维(2D)和三维(3D)CNN以及递归神经网络(RNN)。为了在3D MRI体积上使用2D CNN,每个MRI扫描被分割成2D切片,而忽略了MRI体积中2D图像切片之间的连接。相反,一个CNN模型后面可以跟着一个RNN,这样2D CNN + RNN模型就可以理解MRI的2D图像切片序列之间的连接。问题在于2D CNN中的特征提取步骤与RNN中的分类是独立的。为了解决这个问题,可以使用3D CNN而不是2D CNN来做出基于体素的决策。我们研究的主要贡献是将从2D图像数据集的迁移学习引入到3D CNN中。我们MRI数据集的结果表明,在将AD患者与健康受试者进行分类时,基于序列的决策比基于切片的决策的准确率提高了2%。此外,采用迁移学习的基于3D体素的方法以96.88%的准确率、100%的灵敏度和94.12%的特异性优于其他方法。在MRI扫描上使用CNN进行AD检测的几种实现和实验表明,与其他方法相比,使用3D CNN从ImageNet到MRI数据集进行迁移学习的基于体素的方法显著改善了结果。

相似文献

1
2

引用本文的文献

本文引用的文献

2
End-To-End Alzheimer's Disease Diagnosis and Biomarker Identification.端到端的阿尔茨海默病诊断与生物标志物识别
Mach Learn Med Imaging. 2018 Sep;11046:337-345. doi: 10.1007/978-3-030-00919-9_39. Epub 2018 Sep 15.
3
7
Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks.基于多簇密集卷积网络的阿尔茨海默病诊断。
Comput Med Imaging Graph. 2018 Dec;70:101-110. doi: 10.1016/j.compmedimag.2018.09.009. Epub 2018 Oct 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验