文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

miR-33 在心脏代谢疾病中的作用:新型动物模型和方法的启示。

miR-33 in cardiometabolic diseases: lessons learned from novel animal models and approaches.

机构信息

Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.

Department of Comparative Medicine, Integrative Cell Signaling and Neurobiology of Metabolism Program, Yale University School of Medicine, New Haven, CT, USA.

出版信息

EMBO Mol Med. 2021 May 7;13(5):e12606. doi: 10.15252/emmm.202012606. Epub 2021 May 3.


DOI:10.15252/emmm.202012606
PMID:33938628
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8103095/
Abstract

miRNAs have emerged as critical regulators of nearly all biologic processes and important therapeutic targets for numerous diseases. However, despite the tremendous progress that has been made in this field, many misconceptions remain among much of the broader scientific community about the manner in which miRNAs function. In this review, we focus on miR-33, one of the most extensively studied miRNAs, as an example, to highlight many of the advances that have been made in the miRNA field and the hurdles that must be cleared to promote the development of miRNA-based therapies. We discuss how the generation of novel animal models and newly developed experimental techniques helped to elucidate the specialized roles of miR-33 within different tissues and begin to define the specific mechanisms by which miR-33 contributes to cardiometabolic diseases including obesity and atherosclerosis. This review will summarize what is known about miR-33 and highlight common obstacles in the miRNA field and then describe recent advances and approaches that have allowed researchers to provide a more complete picture of the specific functions of this miRNA.

摘要

miRNAs 已成为几乎所有生物过程的关键调控因子,也是许多疾病的重要治疗靶点。然而,尽管在该领域取得了巨大进展,但在更广泛的科学界中,许多人对 miRNAs 发挥作用的方式仍存在误解。在这篇综述中,我们以研究最广泛的 miRNAs 之一 miR-33 为例,强调了 miRNA 领域的许多进展,以及为促进 miRNA 疗法的发展而必须克服的障碍。我们讨论了新型动物模型的产生和新开发的实验技术如何帮助阐明 miR-33 在不同组织中的特殊作用,并开始定义 miR-33 如何导致肥胖和动脉粥样硬化等代谢性心血管疾病的具体机制。这篇综述将总结关于 miR-33 的已知内容,并强调 miRNA 领域的常见障碍,然后描述最近的进展和方法,这些进展和方法使研究人员能够更全面地了解该 miRNA 的特定功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ad/8103095/63295f3d7fb2/EMMM-13-e12606-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ad/8103095/8153d1d8904d/EMMM-13-e12606-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ad/8103095/23a6eaaaf087/EMMM-13-e12606-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ad/8103095/85ec70a1e764/EMMM-13-e12606-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ad/8103095/63295f3d7fb2/EMMM-13-e12606-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ad/8103095/8153d1d8904d/EMMM-13-e12606-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ad/8103095/23a6eaaaf087/EMMM-13-e12606-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ad/8103095/85ec70a1e764/EMMM-13-e12606-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ad/8103095/63295f3d7fb2/EMMM-13-e12606-g005.jpg

相似文献

[1]
miR-33 in cardiometabolic diseases: lessons learned from novel animal models and approaches.

EMBO Mol Med. 2021-5-7

[2]
microRNAs in lipoprotein metabolism and cardiometabolic disorders.

Atherosclerosis. 2016-3

[3]
MicroRNAs as therapeutic targets in atherosclerosis.

Expert Opin Ther Targets. 2015-4

[4]
MicroRNAs and lipid metabolism.

Curr Opin Lipidol. 2017-6

[5]
Unraveling the miRNA Puzzle in Atherosclerosis: Revolutionizing Diagnosis, Prognosis, and Therapeutic Approaches.

Curr Atheroscler Rep. 2024-8

[6]
microRNAs in Cerebrovascular Disease.

Adv Exp Med Biol. 2015

[7]
ChrXq27.3 miRNA cluster functions in cancer development.

J Exp Clin Cancer Res. 2021-3-25

[8]
Multifunctional Nanoparticles Facilitate Molecular Targeting and miRNA Delivery to Inhibit Atherosclerosis in ApoE(-/-) Mice.

ACS Nano. 2015-9-22

[9]
MicroRNAs: emerging roles in lipid and lipoprotein metabolism.

Curr Opin Lipidol. 2012-6

[10]
microRNAs in the regulation of dendritic cell functions in inflammation and atherosclerosis.

J Mol Med (Berl). 2012-2-4

引用本文的文献

[1]
Metabolic Dysfunction-Associated Steatotic Liver Disease: From a Very Low-Density Lipoprotein Perspective.

Biomolecules. 2025-7-11

[2]
Therapeutic Applications of Poly-miRNAs and miRNA Sponges.

Int J Mol Sci. 2025-5-9

[3]
Connecting the Dots: How MicroRNAs Link Asthma and Atherosclerosis.

Int J Mol Sci. 2025-4-10

[4]
The power of microRNA regulation-insights into immunity and metabolism.

FEBS Lett. 2025-7

[5]
The miRNomics of antiretroviral therapy-induced obesity.

Funct Integr Genomics. 2025-4-5

[6]
Inhibiting MiR-33a-3p Expression Fails to Enhance ApoAI-Mediated Cholesterol Efflux in Pro-Inflammatory Endothelial Cells.

Medicina (Kaunas). 2025-2-13

[7]
Exploring serum miR-33b as a novel diagnostic marker for hypercholesterolemia and obesity: insights from a pilot case-control study.

BMC Endocr Disord. 2025-1-30

[8]
Resveratrol suppresses hepatic fatty acid synthesis and increases fatty acid β-oxidation via the microRNA-33/SIRT6 signaling pathway.

Exp Ther Med. 2024-6-19

[9]
Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics.

Int J Mol Sci. 2024-6-5

[10]
Inhibition of miR-33a-5p in Macrophage-like Cells In Vitro Promotes apoAI-Mediated Cholesterol Efflux.

Pathophysiology. 2024-2-28

本文引用的文献

[1]
Loss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosis.

Proc Natl Acad Sci U S A. 2021-2-2

[2]
Delivery of microRNA-33 Antagomirs by Mesoporous Silica Nanoparticles to Ameliorate Lipid Metabolic Disorders.

Front Pharmacol. 2020-8-5

[3]
MiR-33a functions as a tumor suppressor in triple-negative breast cancer by targeting EZH2.

Cancer Cell Int. 2020-3-18

[4]
Downregulation of miR-33 Has Protective Effect Against Aβ₂₅₋₃₅-Induced Injury in SH-SH-SY5Y Cells.

Med Sci Monit. 2020-3-2

[5]
Cholesterol metabolism regulation mediated by SREBP-2, LXRα and miR-33a in rainbow trout (Oncorhynchus mykiss) both in vivo and in vitro.

PLoS One. 2020-2-28

[6]
Up-regulated microRNA-33b inhibits epithelial-mesenchymal transition in gallbladder cancer through down-regulating CROCC.

Biosci Rep. 2020-1-31

[7]
MicroRNA-33/33* inhibit the activation of MAVS through AMPK in antiviral innate immunity.

Cell Mol Immunol. 2021-6

[8]
Suppressing miR-21 activity in tumor-associated macrophages promotes an antitumor immune response.

J Clin Invest. 2019-12-2

[9]
Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis.

JCI Insight. 2019-11-14

[10]
The long noncoding RNA CHROME regulates cholesterol homeostasis in primate.

Nat Metab. 2018-12-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索