Schleusener Alexander, Micheel Mathias, Benndorf Stefan, Rettenmayr Markus, Weigand Wolfgang, Wächtler Maria
Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.
Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
J Phys Chem Lett. 2021 May 13;12(18):4385-4391. doi: 10.1021/acs.jpclett.1c01028. Epub 2021 May 3.
The combination of CdSe nanoparticles as photosensitizers with [FeFe]-hydrogenase mimics is known to result in efficient systems for light-driven hydrogen generation with reported turnover numbers in the order of 10-10. Nevertheless, little is known about the details of the light-induced charge-transfer processes. Here, we investigate the time scale of light-induced electron transfer kinetics for a simple model system consisting of CdSe quantum dots (QDs) of 2.0 nm diameter and a simple [FeFe]-hydrogenase mimic adsorbed to the QD surface under noncatalytic conditions. Our (time-resolved) spectroscopic investigation shows that both hot electron transfer on a sub-ps time scale and band-edge electron transfer on a sub-10 ps time scale from photoexcited QDs to adsorbed [FeFe]-hydrogenase mimics occur. Fast recombination via back electron transfer is observed in the absence of a sacrificial agent or protons which, under real catalytic conditions, would quench remaining holes or could stabilize the charge separation, respectively.
已知将作为光敏剂的CdSe纳米颗粒与[FeFe]-氢化酶模拟物相结合,可形成高效的光驱动产氢系统,报道的周转数约为10-10。然而,对于光诱导电荷转移过程的细节却知之甚少。在此,我们研究了一个简单模型系统的光诱导电子转移动力学的时间尺度,该系统由直径为2.0 nm的CdSe量子点(QD)和在非催化条件下吸附在QD表面的简单[FeFe]-氢化酶模拟物组成。我们的(时间分辨)光谱研究表明,在亚皮秒时间尺度上发生从光激发的QD到吸附的[FeFe]-氢化酶模拟物的热电子转移,以及在亚10皮秒时间尺度上发生带边电子转移。在没有牺牲剂或质子的情况下,观察到通过反向电子转移的快速复合,在实际催化条件下,牺牲剂或质子分别会淬灭剩余的空穴或稳定电荷分离。