Suppr超能文献

系统基因组冲突与快速形态创新相吻合。

Phylogenomic conflict coincides with rapid morphological innovation.

机构信息

Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637;

Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.

出版信息

Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2023058118.

Abstract

Evolutionary biologists have long been fascinated with the episodes of rapid phenotypic innovation that underlie the emergence of major lineages. Although our understanding of the environmental and ecological contexts of such episodes has steadily increased, it has remained unclear how population processes contribute to emergent macroevolutionary patterns. One insight gleaned from phylogenomics is that gene-tree conflict, frequently caused by population-level processes, is often rampant during the origin of major lineages. With the understanding that phylogenomic conflict is often driven by complex population processes, we hypothesized that there may be a direct correspondence between instances of high conflict and elevated rates of phenotypic innovation if both patterns result from the same processes. We evaluated this hypothesis in six clades spanning vertebrates and plants. We found that the most conflict-rich regions of these six clades also tended to experience the highest rates of phenotypic innovation, suggesting that population processes shaping both phenotypic and genomic evolution may leave signatures at deep timescales. Closer examination of the biological significance of phylogenomic conflict may yield improved connections between micro- and macroevolution and increase our understanding of the processes that shape the origin of major lineages across the Tree of Life.

摘要

进化生物学家长期以来一直对导致主要谱系出现的快速表型创新事件着迷。尽管我们对这些事件的环境和生态背景的理解稳步提高,但仍不清楚种群过程如何促成新兴的宏观进化模式。从系统基因组学中获得的一个见解是,基因树冲突(通常由种群水平的过程引起)在主要谱系起源时经常猖獗。由于理解到系统基因组冲突通常是由复杂的种群过程驱动的,我们假设如果这两种模式都是由相同的过程产生的,那么在高冲突和表型创新率较高的情况下,可能存在直接的对应关系。我们在跨越脊椎动物和植物的六个进化枝中评估了这个假设。我们发现,这六个进化枝中冲突最丰富的区域也往往经历了最高的表型创新率,这表明塑造表型和基因组进化的种群过程可能在深层时间尺度上留下痕迹。更仔细地研究系统基因组冲突的生物学意义,可能会在微观进化和宏观进化之间建立更好的联系,并增加我们对塑造整个生命之树主要谱系起源的过程的理解。

相似文献

1
Phylogenomic conflict coincides with rapid morphological innovation.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2023058118.
2
Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms.
Nat Plants. 2021 Aug;7(8):1015-1025. doi: 10.1038/s41477-021-00964-4. Epub 2021 Jul 19.
4
Microevolutionary processes generate phylogenomic discordance at ancient divergences.
Evolution. 2013 Jun;67(6):1823-30. doi: 10.1111/evo.12047. Epub 2013 Feb 4.
7
Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition.
Curr Biol. 2014 Oct 20;24(20):2386-92. doi: 10.1016/j.cub.2014.08.034. Epub 2014 Sep 25.
8
Phylogenomic analyses data of the avian phylogenomics project.
Gigascience. 2015 Feb 12;4:4. doi: 10.1186/s13742-014-0038-1. eCollection 2015.
9
A comparative genomic framework for the fish-tetrapod transition.
Sci China Life Sci. 2021 Apr;64(4):664-666. doi: 10.1007/s11427-021-1903-x. Epub 2021 Mar 1.
10
A Comprehensive Study of Cyanobacterial Morphological and Ecological Evolutionary Dynamics through Deep Geologic Time.
PLoS One. 2016 Sep 20;11(9):e0162539. doi: 10.1371/journal.pone.0162539. eCollection 2016.

引用本文的文献

1
Longevity in plants impacts phylogenetic and population dynamics.
bioRxiv. 2025 Jun 24:2025.06.20.660758. doi: 10.1101/2025.06.20.660758.
3
Phylogenomics reveals the slow-burning fuse of diatom evolution.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2500153122. doi: 10.1073/pnas.2500153122. Epub 2025 May 29.
4
The Consequences of Budding Speciation on Trees.
Syst Biol. 2025 Jun 12;74(3):499-510. doi: 10.1093/sysbio/syaf012.
5
Repeated shifts out of tropical climates preceded by whole genome duplication.
New Phytol. 2024 Dec;244(6):2561-2575. doi: 10.1111/nph.20200. Epub 2024 Oct 23.
6
New beginnings for dead ends: polyploidy, -SSE models and the dead-end hypothesis.
Ann Bot. 2024 Dec 31;134(6):923-932. doi: 10.1093/aob/mcae143.
8
Genome and life-history evolution link bird diversification to the end-Cretaceous mass extinction.
Sci Adv. 2024 Aug 2;10(31):eadp0114. doi: 10.1126/sciadv.adp0114. Epub 2024 Jul 31.
10
Phylogenomics of Neogastropoda: The Backbone Hidden in the Bush.
Syst Biol. 2024 Sep 5;73(3):521-531. doi: 10.1093/sysbio/syae010.

本文引用的文献

1
The ecological and genomic basis of explosive adaptive radiation.
Nature. 2020 Oct;586(7827):75-79. doi: 10.1038/s41586-020-2652-7. Epub 2020 Aug 26.
3
A consensus phylogenomic approach highlights paleopolyploid and rapid radiation in the history of Ericales.
Am J Bot. 2020 May;107(5):773-789. doi: 10.1002/ajb2.1469. Epub 2020 Apr 29.
4
Macroevolutionary convergence connects morphological form to ecological function in birds.
Nat Ecol Evol. 2020 Feb;4(2):230-239. doi: 10.1038/s41559-019-1070-4. Epub 2020 Jan 13.
5
Mosaic evolution, preadaptation, and the evolution of evolvability in apes.
Evolution. 2020 Feb;74(2):297-310. doi: 10.1111/evo.13923. Epub 2020 Jan 16.
6
Phylogenetic Conflicts, Combinability, and Deep Phylogenomics in Plants.
Syst Biol. 2020 May 1;69(3):579-592. doi: 10.1093/sysbio/syz078.
7
One thousand plant transcriptomes and the phylogenomics of green plants.
Nature. 2019 Oct;574(7780):679-685. doi: 10.1038/s41586-019-1693-2. Epub 2019 Oct 23.
8
The evolution of betalain biosynthesis in Caryophyllales.
New Phytol. 2019 Oct;224(1):71-85. doi: 10.1111/nph.15980. Epub 2019 Jul 19.
9
A Combinatorial View on Speciation and Adaptive Radiation.
Trends Ecol Evol. 2019 Jun;34(6):531-544. doi: 10.1016/j.tree.2019.02.008. Epub 2019 Mar 15.
10
Quantifying the risk of hemiplasy in phylogenetic inference.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12787-12792. doi: 10.1073/pnas.1811268115. Epub 2018 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验