Suppr超能文献

新病例扩展了先天性 NAD 缺乏症的基因型和表型谱。

New cases that expand the genotypic and phenotypic spectrum of Congenital NAD Deficiency Disorder.

机构信息

Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.

Department of Pediatrics, University of California San Francisco, San Francisco, California, USA.

出版信息

Hum Mutat. 2021 Jul;42(7):862-876. doi: 10.1002/humu.24211. Epub 2021 May 16.

Abstract

Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme involved in over 400 cellular reactions. During embryogenesis, mammals synthesize NAD de novo from dietary l -tryptophan via the kynurenine pathway. Biallelic, inactivating variants in three genes encoding enzymes of this biosynthesis pathway (KYNU, HAAO, and NADSYN1) disrupt NAD synthesis and have been identified in patients with multiple malformations of the heart, kidney, vertebrae, and limbs; these patients have Congenital NAD Deficiency Disorder HAAO and four families with biallelic variants in KYNU. These patients present similarly with multiple malformations of the heart, kidney, vertebrae, and limbs, of variable severity. We show that each variant identified in these patients results in loss-of-function, revealed by a significant reduction in NAD levels via yeast genetic complementation assays. For the first time, missense mutations are identified as a cause of malformation and shown to disrupt enzyme function. These missense and frameshift variants cause moderate to severe NAD deficiency in yeast, analogous to insufficient synthesized NAD in patients. We hereby expand the genotypic and corresponding phenotypic spectrum of Congenital NAD Deficiency Disorder.

摘要

烟酰胺腺嘌呤二核苷酸(NAD)是一种必需的辅酶,参与超过 400 种细胞反应。在胚胎发生过程中,哺乳动物通过犬尿氨酸途径从饮食中的 l-色氨酸从头合成 NAD。编码该生物合成途径中三种酶的三个基因(KYNU、HAAO 和 NADSYN1)中的双等位基因失活变异体破坏 NAD 的合成,并已在患有心脏、肾脏、脊椎和四肢多种畸形的患者中被发现;这些患者患有先天性 NAD 缺乏症 HAAO 和四个家族中 KYNU 的双等位基因变异体。这些患者的表现相似,均存在心脏、肾脏、脊椎和四肢的多种畸形,严重程度不同。我们表明,这些患者中鉴定出的每个变异体都导致功能丧失,通过酵母遗传互补测定显示 NAD 水平显著降低来揭示这一点。首次发现错义突变是畸形的原因,并表明其破坏了酶的功能。这些错义突变和移码变体导致酵母中 NAD 中度至重度缺乏,类似于患者中合成的 NAD 不足。我们在此扩展了先天性 NAD 缺乏症的基因型和相应表型谱。

相似文献

1
New cases that expand the genotypic and phenotypic spectrum of Congenital NAD Deficiency Disorder.
Hum Mutat. 2021 Jul;42(7):862-876. doi: 10.1002/humu.24211. Epub 2021 May 16.
2
Bi-allelic Mutations in NADSYN1 Cause Multiple Organ Defects and Expand the Genotypic Spectrum of Congenital NAD Deficiency Disorders.
Am J Hum Genet. 2020 Jan 2;106(1):129-136. doi: 10.1016/j.ajhg.2019.12.006. Epub 2019 Dec 26.
3
NAD Deficiency, Congenital Malformations, and Niacin Supplementation.
N Engl J Med. 2017 Aug 10;377(6):544-552. doi: 10.1056/NEJMoa1616361.
4
Nicotinamide Adenine Dinucleotide Deficiency and Its Impact on Mammalian Development.
Antioxid Redox Signal. 2023 Dec;39(16-18):1108-1132. doi: 10.1089/ars.2023.0349. Epub 2023 Jul 28.
5
A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder.
J Clin Invest. 2024 Feb 15;134(4):e174824. doi: 10.1172/JCI174824.
6
NAD deficiency due to environmental factors or gene-environment interactions causes congenital malformations and miscarriage in mice.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3738-3747. doi: 10.1073/pnas.1916588117. Epub 2020 Feb 3.
7
Disruptive Variants Implicated in Congenital Vertebral Malformations.
Genes (Basel). 2021 Oct 14;12(10):1615. doi: 10.3390/genes12101615.
9
Metabolic Alterations in NADSYN1-Deficient Cells.
Metabolites. 2023 Dec 12;13(12):1196. doi: 10.3390/metabo13121196.
10
Clinical heterogeneity of NADSYN1-associated VCRL syndrome.
Clin Genet. 2023 Jul;104(1):114-120. doi: 10.1111/cge.14328. Epub 2023 Mar 23.

引用本文的文献

4
Supplementation with NAD+ and its precursors: A rescue of female reproductive diseases.
Biochem Biophys Rep. 2024 Apr 23;38:101715. doi: 10.1016/j.bbrep.2024.101715. eCollection 2024 Jul.
5
The Role of NAD and NAD-Boosting Therapies in Inflammatory Response by IL-13.
Pharmaceuticals (Basel). 2024 Feb 8;17(2):226. doi: 10.3390/ph17020226.
6
Inhibitors of NAD Production in Cancer Treatment: State of the Art and Perspectives.
Int J Mol Sci. 2024 Feb 8;25(4):2092. doi: 10.3390/ijms25042092.
7
A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder.
J Clin Invest. 2024 Feb 15;134(4):e174824. doi: 10.1172/JCI174824.
8
Metabolic Alterations in NADSYN1-Deficient Cells.
Metabolites. 2023 Dec 12;13(12):1196. doi: 10.3390/metabo13121196.
10
Clinical and biochemical footprints of inherited metabolic diseases. XIV. Metabolic kidney diseases.
Mol Genet Metab. 2023 Nov;140(3):107683. doi: 10.1016/j.ymgme.2023.107683. Epub 2023 Aug 12.

本文引用的文献

1
NAD homeostasis in health and disease.
Nat Metab. 2020 Jan;2(1):9-31. doi: 10.1038/s42255-019-0161-5. Epub 2020 Jan 20.
2
Location, Location, Location: Compartmentalization of NAD Synthesis and Functions in Mammalian Cells.
Trends Biochem Sci. 2020 Oct;45(10):858-873. doi: 10.1016/j.tibs.2020.05.010. Epub 2020 Jun 25.
3
The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature. 2020 May;581(7809):434-443. doi: 10.1038/s41586-020-2308-7. Epub 2020 May 27.
4
Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway.
Cell Metab. 2020 Mar 3;31(3):564-579.e7. doi: 10.1016/j.cmet.2020.02.001.
5
NAD Repletion Rescues Female Fertility during Reproductive Aging.
Cell Rep. 2020 Feb 11;30(6):1670-1681.e7. doi: 10.1016/j.celrep.2020.01.058.
6
NAD deficiency due to environmental factors or gene-environment interactions causes congenital malformations and miscarriage in mice.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3738-3747. doi: 10.1073/pnas.1916588117. Epub 2020 Feb 3.
7
Biallelic variants in KYNU cause a multisystemic syndrome with hand hyperphalangism.
Bone. 2020 Apr;133:115219. doi: 10.1016/j.bone.2019.115219. Epub 2020 Jan 7.
8
Bi-allelic Mutations in NADSYN1 Cause Multiple Organ Defects and Expand the Genotypic Spectrum of Congenital NAD Deficiency Disorders.
Am J Hum Genet. 2020 Jan 2;106(1):129-136. doi: 10.1016/j.ajhg.2019.12.006. Epub 2019 Dec 26.
9
CADD: predicting the deleteriousness of variants throughout the human genome.
Nucleic Acids Res. 2019 Jan 8;47(D1):D886-D894. doi: 10.1093/nar/gky1016.
10
Mutations in the Epithelial Cadherin-p120-Catenin Complex Cause Mendelian Non-Syndromic Cleft Lip with or without Cleft Palate.
Am J Hum Genet. 2018 Jun 7;102(6):1143-1157. doi: 10.1016/j.ajhg.2018.04.009. Epub 2018 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验