Suppr超能文献

乒乓球教练:基于多模态数据和神经网络的正手击球分类。

Table Tennis Tutor: Forehand Strokes Classification Based on Multimodal Data and Neural Networks.

机构信息

Cologne Game Lab, TH Köln, 51063 Cologne, Germany.

DIPF|Leibniz Institute for Research and Information in Education, 60323 Frankfurt, Germany.

出版信息

Sensors (Basel). 2021 Apr 30;21(9):3121. doi: 10.3390/s21093121.

Abstract

Beginner table-tennis players require constant real-time feedback while learning the fundamental techniques. However, due to various constraints such as the mentor's inability to be around all the time, expensive sensors and equipment for sports training, beginners are unable to get the immediate real-time feedback they need during training. Sensors have been widely used to train beginners and novices for various skills development, including psychomotor skills. Sensors enable the collection of multimodal data which can be utilised with machine learning to classify training mistakes, give feedback, and further improve the learning outcomes. In this paper, we introduce the Table Tennis Tutor (T3), a multi-sensor system consisting of a smartphone device with its built-in sensors for collecting motion data and a Microsoft Kinect for tracking body position. We focused on the forehand stroke mistake detection. We collected a dataset recording an experienced table tennis player performing 260 short forehand strokes (correct) and mimicking 250 long forehand strokes (mistake). We analysed and annotated the multimodal data for training a recurrent neural network that classifies correct and incorrect strokes. To investigate the accuracy level of the aforementioned sensors, three combinations were validated in this study: smartphone sensors only, the Kinect only, and both devices combined. The results of the study show that smartphone sensors alone perform sub-par than the Kinect, but similar with better precision together with the Kinect. To further strengthen T3's potential for training, an expert interview session was held virtually with a table tennis coach to investigate the coach's perception of having a real-time feedback system to assist beginners during training sessions. The outcome of the interview shows positive expectations and provided more inputs that can be beneficial for the future implementations of the T3.

摘要

初学者在学习基本技术时需要持续的实时反馈。然而,由于导师不能随时在身边、运动训练昂贵的传感器和设备等各种限制,初学者在训练中无法获得即时的实时反馈。传感器已广泛用于培训初学者和新手的各种技能发展,包括运动技能。传感器能够收集多模态数据,这些数据可以与机器学习结合使用,以对训练错误进行分类、提供反馈,并进一步提高学习效果。在本文中,我们介绍了乒乓球教练(T3),这是一个由智能手机设备及其内置传感器组成的多传感器系统,用于收集运动数据,以及 Microsoft Kinect 用于跟踪身体位置。我们专注于正手击球错误检测。我们收集了一个记录有经验的乒乓球运动员执行 260 次短正手击球(正确)和模仿 250 次长正手击球(错误)的数据集。我们分析和注释了多模态数据,以训练一个分类正确和错误击球的递归神经网络。为了研究上述传感器的准确性水平,本研究验证了三种组合:仅智能手机传感器、仅 Kinect 和两个设备的组合。研究结果表明,智能手机传感器的性能逊于 Kinect,但与 Kinect 一起使用时精度更高。为了进一步加强 T3 在培训中的潜力,与乒乓球教练进行了虚拟专家访谈,以调查教练对拥有实时反馈系统以在培训期间协助初学者的看法。访谈的结果显示出积极的期望,并提供了更多有益的输入,可用于 T3 的未来实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d286/8124603/91bfb4449ff7/sensors-21-03121-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验