Suppr超能文献

多传感羽毛球:基于可穿戴传感器的生物力学数据集,用于评估羽毛球表现。

MultiSenseBadminton: Wearable Sensor-Based Biomechanical Dataset for Evaluation of Badminton Performance.

机构信息

Gwangju Institute of Science and Technology, School of Integrated Technology, Gwangju, 61005, South Korea.

Massachusetts Institute of Technology, CSAIL, Cambridge, MA, 02139, USA.

出版信息

Sci Data. 2024 Apr 5;11(1):343. doi: 10.1038/s41597-024-03144-z.

Abstract

The sports industry is witnessing an increasing trend of utilizing multiple synchronized sensors for player data collection, enabling personalized training systems with multi-perspective real-time feedback. Badminton could benefit from these various sensors, but there is a scarcity of comprehensive badminton action datasets for analysis and training feedback. Addressing this gap, this paper introduces a multi-sensor badminton dataset for forehand clear and backhand drive strokes, based on interviews with coaches for optimal usability. The dataset covers various skill levels, including beginners, intermediates, and experts, providing resources for understanding biomechanics across skill levels. It encompasses 7,763 badminton swing data from 25 players, featuring sensor data on eye tracking, body tracking, muscle signals, and foot pressure. The dataset also includes video recordings, detailed annotations on stroke type, skill level, sound, ball landing, and hitting location, as well as survey and interview data. We validated our dataset by applying a proof-of-concept machine learning model to all annotation data, demonstrating its comprehensive applicability in advanced badminton training and research.

摘要

体育行业见证了一种利用多个同步传感器进行球员数据采集的趋势,从而实现了具有多视角实时反馈的个性化训练系统。羽毛球可以从这些各种传感器中受益,但缺乏用于分析和训练反馈的综合羽毛球动作数据集。为了解决这一差距,本文介绍了一个基于访谈教练以实现最佳可用性的多传感器羽毛球数据集,用于正手高远球和反手抽球。该数据集涵盖了各种技能水平,包括初学者、中级和专家,为理解不同技能水平的生物力学提供了资源。它包含了 25 名运动员的 7763 次羽毛球挥拍数据,其中包括眼动追踪、身体追踪、肌肉信号和足底压力等传感器数据。该数据集还包括视频记录、有关击球类型、技能水平、声音、球落地和击球位置的详细注释,以及调查和访谈数据。我们通过将机器学习模型应用于所有注释数据来验证我们的数据集,证明了其在高级羽毛球训练和研究中的全面适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7e5/10997636/086715c889ae/41597_2024_3144_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验