Ditte Kristina, Kiriy Nataliya, Perez Jonathan, Hambsch Mike, Mannsfeld Stefan C B, Krupskaya Yulia, Maragani Ramesh, Voit Brigitte, Lissel Franziska
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
Polymers (Basel). 2021 Apr 29;13(9):1435. doi: 10.3390/polym13091435.
Shear coating is a promising deposition method for upscaling device fabrication and enabling high throughput, and is furthermore suitable for translating to roll-to-roll processing. Although common polymer semiconductors (PSCs) are solution processible, they are still prone to mechanical failure upon stretching, limiting applications in e.g., electronic skin and health monitoring. Progress made towards mechanically compliant PSCs, e.g., the incorporation of soft segments into the polymer backbone, could not only allow such applications, but also benefit advanced fabrication methods, like roll-to-roll printing on flexible substrates, to produce the targeted devices. Tri-block copolymers (TBCs), consisting of an inner rigid semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) block flanked by two soft elastomeric poly(dimethylsiloxane) (PDMS) chains, maintain good charge transport properties, while being mechanically soft and flexible. Potentially aiming at the fabrication of TBC-based wearable electronics by means of cost-efficient and scalable deposition methods (e.g., blade-coating), a tolerance of the electrical performance of the TBCs to the shear speed was investigated. Herein, we demonstrate that such TBCs can be deposited at high shear speeds (film formation up to a speed of 10 mm s). While such high speeds result in increased film thickness, no degradation of the electrical performance was observed, as was frequently reported for polymer-based OFETs. Instead, high shear speeds even led to a small improvement in the electrical performance: mobility increased from 0.06 cm V s at 0.5 mm s to 0.16 cm V s at 7 mm s for the TBC with 24 wt% PDMS, and for the TBC containing 37 wt% PDMS from 0.05 cm V s at 0.5 mm s to 0.13 cm V s at 7 mm s. Interestingly, the improvement of mobility is not accompanied by any significant changes in morphology.
剪切涂布是一种很有前景的沉积方法,可用于扩大器件制造规模并实现高通量,而且还适用于向卷对卷工艺转化。尽管常见的聚合物半导体(PSC)可通过溶液加工,但在拉伸时仍容易出现机械故障,限制了其在例如电子皮肤和健康监测等领域的应用。在机械柔顺的PSC方面取得的进展,例如将软链段引入聚合物主链,不仅可以实现此类应用,还能使先进的制造方法受益,如在柔性基板上进行卷对卷印刷,以生产目标器件。由内部刚性半导体聚二酮吡咯并吡咯-噻吩并噻吩(PDPP-TT)嵌段和两侧两个软弹性体聚二甲基硅氧烷(PDMS)链组成的三嵌段共聚物(TBC),在保持良好电荷传输性能的同时,还具有机械柔软性和柔韧性。为了通过具有成本效益且可扩展的沉积方法(例如刮刀涂布)制造基于TBC的可穿戴电子产品,研究了TBC的电性能对剪切速度的耐受性。在此,我们证明此类TBC可以在高剪切速度下沉积(成膜速度高达10 mm s)。虽然如此高的速度会导致膜厚度增加,但未观察到电性能下降,这与基于聚合物的有机场效应晶体管(OFET)经常报道的情况不同。相反,高剪切速度甚至使电性能有小幅提升:对于含24 wt% PDMS的TBC,迁移率从0.5 mm s时的0.06 cm² V⁻¹ s⁻¹增加到7 mm s时的0.16 cm² V⁻¹ s⁻¹;对于含37 wt% PDMS的TBC,迁移率从0.5 mm s时的0.05 cm² V⁻¹ s⁻¹增加到7 mm s时的0.13 cm² V⁻¹ s⁻¹。有趣的是,迁移率的提高并未伴随形态上的任何显著变化。