Suppr超能文献

生物光子与量子相干的出现——扩散熵分析

Biophotons and Emergence of Quantum Coherence-A Diffusion Entropy Analysis.

作者信息

Benfatto Maurizio, Pace Elisabetta, Curceanu Catalina, Scordo Alessandro, Clozza Alberto, Davoli Ivan, Lucci Massimiliano, Francini Roberto, De Matteis Fabio, Grandi Maurizio, Tuladhar Rohisha, Grigolini Paolo

机构信息

Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy.

Dipartimento di Fisica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy.

出版信息

Entropy (Basel). 2021 Apr 29;23(5):554. doi: 10.3390/e23050554.

Abstract

We study the emission of photons from germinating seeds using an experimental technique designed to detect light of extremely small intensity. We analyze the dark count signal without germinating seeds as well as the photon emission during the germination process. The technique of analysis adopted here, called diffusion entropy analysis (DEA) and originally designed to measure the temporal complexity of astrophysical, sociological and physiological processes, rests on Kolmogorov complexity. The updated version of DEA used in this paper is designed to determine if the signal complexity is generated either by non-ergodic crucial events with a non-stationary correlation function or by the infinite memory of a stationary but non-integrable correlation function or by a mixture of both processes. We find that dark count yields the ordinary scaling, thereby showing that no complexity of either kinds may occur without any seeds in the chamber. In the presence of seeds in the chamber anomalous scaling emerges, reminiscent of that found in neuro-physiological processes. However, this is a mixture of both processes and with the progress of germination the non-ergodic component tends to vanish and complexity becomes dominated by the stationary infinite memory. We illustrate some conjectures ranging from stress induced annihilation of crucial events to the emergence of quantum coherence.

摘要

我们使用一种旨在检测极微弱光强的实验技术,研究发芽种子发出的光子。我们分析了没有发芽种子时的暗计数信号以及发芽过程中的光子发射。这里采用的分析技术称为扩散熵分析(DEA),最初旨在测量天体物理、社会学和生理过程的时间复杂性,它基于柯尔莫哥洛夫复杂性。本文中使用的DEA更新版本旨在确定信号复杂性是由具有非平稳相关函数的非遍历关键事件产生,还是由平稳但不可积相关函数的无限记忆产生,或者是由这两种过程的混合产生。我们发现暗计数产生普通标度,从而表明在室内没有任何种子时,不会出现任何一种复杂性。当室内有种子时,出现异常标度,这让人想起在神经生理过程中发现的情况。然而,这是两种过程的混合,随着发芽的进行,非遍历成分趋于消失,复杂性由平稳无限记忆主导。我们阐述了一些猜想,从压力诱导关键事件的湮灭到量子相干的出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbdd/8146849/b69e2d39fe95/entropy-23-00554-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验