Scafetta Nicola, Grigolini Paolo
Pratt School EE Department, Duke University, P.O. Box 90291, Durham, North Carolina 27708, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 2A):036130. doi: 10.1103/PhysRevE.66.036130. Epub 2002 Sep 25.
The methods currently used to determine the scaling exponent of a complex dynamic process described by a time series are based on the numerical evaluation of variance. This means that all of them can be safely applied only to the case where ordinary statistical properties hold true even if strange kinetics are involved. We illustrate a method of statistical analysis based on the Shannon entropy of the diffusion process generated by the time series, called diffusion entropy analysis (DEA). We adopt artificial Gauss and Lévy time series, as prototypes of ordinary and anomalous statistics, respectively, and we analyze them with the DEA and four ordinary methods of analysis, some of which are very popular. We show that the DEA determines the correct scaling exponent even when the statistical properties, as well as the dynamic properties, are anomalous. The other four methods produce correct results in the Gauss case but fail to detect the correct scaling in the case of Lévy statistics.
目前用于确定由时间序列描述的复杂动态过程的标度指数的方法是基于方差的数值评估。这意味着所有这些方法只有在即使涉及奇异动力学但普通统计特性仍然成立的情况下才能安全应用。我们阐述了一种基于时间序列生成的扩散过程的香农熵的统计分析方法,称为扩散熵分析(DEA)。我们分别采用人工高斯和列维时间序列,作为普通统计和异常统计的原型,并使用DEA和四种普通分析方法对它们进行分析,其中一些方法非常流行。我们表明,即使统计特性以及动态特性是异常的,DEA也能确定正确的标度指数。其他四种方法在高斯情况下产生正确结果,但在列维统计情况下无法检测到正确的标度。