Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.
Sci Signal. 2021 May 4;14(681):eabd7325. doi: 10.1126/scisignal.abd7325.
Neurons maintain stable levels of excitability using homeostatic synaptic scaling, which adjusts the strength of a neuron's postsynaptic inputs to compensate for extended changes in overall activity. Here, we investigated whether prolonged changes in activity affect network-level protein interactions at the synapse. We assessed a glutamatergic synapse protein interaction network (PIN) composed of 380 binary associations among 21 protein members in mouse neurons. Manipulating the activation of cultured mouse cortical neurons induced widespread bidirectional PIN alterations that reflected rapid rearrangements of glutamate receptor associations involving synaptic scaffold remodeling. Sensory deprivation of the barrel cortex in live mice (by whisker trimming) caused specific PIN rearrangements, including changes in the association between the glutamate receptor mGluR5 and the kinase Fyn. These observations are consistent with emerging models of experience-dependent plasticity involving multiple types of homeostatic responses. However, mice lacking or did not undergo normal PIN rearrangements, suggesting that the proteins encoded by these autism spectrum disorder-linked genes serve as structural hubs for synaptic homeostasis. Our approach demonstrates how changes in the protein content of synapses during homeostatic plasticity translate into functional PIN alterations that mediate changes in neuron excitability.
神经元利用同型突触可塑性来维持稳定的兴奋水平,这种可塑性会调整神经元突触后输入的强度,以补偿整体活动的持续变化。在这里,我们研究了活性的长期变化是否会影响突触处的网络级蛋白质相互作用。我们评估了由 21 种蛋白质成员组成的 380 个二元谷氨酸能突触蛋白相互作用网络 (PIN)。在培养的小鼠皮质神经元中操纵激活,诱导广泛的双向 PIN 改变,反映了涉及突触支架重塑的谷氨酸受体关联的快速重新排列。在活体小鼠的桶状皮层中进行感觉剥夺(通过修剪胡须)会导致特定的 PIN 重排,包括谷氨酸受体 mGluR5 和激酶 Fyn 之间的关联变化。这些观察结果与涉及多种同型反应的经验依赖性可塑性的新兴模型一致。然而,缺失 或 的小鼠不会发生正常的 PIN 重排,这表明这些自闭症谱系障碍相关基因编码的蛋白质作为突触同型的结构枢纽。我们的方法表明,同型可塑性过程中突触蛋白质含量的变化如何转化为介导神经元兴奋性变化的功能性 PIN 改变。