The Solomon Snyder Department of Neuroscience, Johns Hopkins University, USA.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):816-21. doi: 10.1073/pnas.1017914108. Epub 2010 Dec 27.
Both theoretical and experimental research has indicated that the synaptic strength between neurons in a network needs to be properly fine-tuned and controlled by homeostatic mechanisms to ensure proper network function. One such mechanism that has been extensively characterized is synaptic homeostatic plasticity or global synaptic scaling. This mechanism refers to the bidirectional ability of all synapses impinging on a neuron to actively compensate for changes in the neuron's overall excitability. Here, using a combination of electrophysiological, two-photon glutamate uncaging and imaging methods, we show that mature individual synapses, independent of neighboring synapses, have the ability to autonomously sense their level of activity and actively compensate for it in a homeostatic-like fashion. This synapse-specific homeostatic plasticity, similar to global synaptic plasticity, requires the immediate early gene Arc. Together, our results document an extra level of regulation of synaptic function that bears important computational consequences on information storage in the brain.
理论和实验研究都表明,网络中神经元之间的突触强度需要通过动态平衡机制进行适当的微调与控制,以确保网络的正常功能。其中一个已经得到广泛研究的机制是突触的动态平衡可塑性或全局突触缩放。这种机制是指作用于神经元的所有突触具有双向能力,可以主动补偿神经元整体兴奋性的变化。在这里,我们结合使用电生理学、双光子谷氨酸光解和成像方法,证明了成熟的单个突触具有独立于相邻突触的自主感知其活动水平并以动态平衡样的方式主动进行补偿的能力。这种突触特异性的动态平衡可塑性类似于全局突触可塑性,需要即时早期基因 Arc 的参与。总之,我们的结果证明了突触功能存在一个额外的调节层次,这对大脑中的信息存储具有重要的计算意义。