Regan Blake, Trycz Aleksandra, Fröch Johannes E, Schaeper Otto Cranwell, Kim Sejeong, Aharonovich Igor
School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia.
Nanoscale. 2021 May 20;13(19):8848-8854. doi: 10.1039/d1nr00749a.
Advancement of diamond based photonic circuitry requires robust fabrication protocols of key components - including diamond resonators and cavities. Here, we present 1D (nanobeam) photonic crystal cavities generated from single crystal diamond membranes utilising a metallic tungsten layer as a restraining, conductive and removable hard mask. The use of tungsten instead of a more conventional silicon oxide layer enables good repeatability and reliability of the fabrication procedures. The process yields high quality diamond cavities with quality factors (Q-factors) approaching 1 × 104. Finally, we show that the cavities can be picked up and transferred onto a trenched substrate to realise fully suspended diamond cavities. Our fabrication process demonstrates the capability of diamond membranes as modular components for broader diamond based quantum photonic circuitry.
基于金刚石的光子电路的发展需要关键组件(包括金刚石谐振器和腔)的稳健制造协议。在此,我们展示了利用金属钨层作为约束、导电且可去除的硬掩模从单晶金刚石膜生成的一维(纳米梁)光子晶体腔。使用钨而非更传统的氧化硅层可实现制造过程的良好重复性和可靠性。该工艺可产生品质因数(Q 因子)接近 1×10⁴ 的高质量金刚石腔。最后,我们表明这些腔可以被拾取并转移到有沟槽的衬底上,以实现完全悬浮的金刚石腔。我们的制造工艺证明了金刚石膜作为更广泛的基于金刚石的量子光子电路模块化组件的能力。