School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States.
Nano Lett. 2012 Dec 12;12(12):6084-9. doi: 10.1021/nl302541e. Epub 2012 Nov 26.
A variety of nanoscale photonic, mechanical, electronic, and optoelectronic devices require scalable thin film fabrication. Typically, the device layer is defined by thin film deposition on a substrate of a different material, and optical or electrical isolation is provided by the material properties of the substrate or by removal of the substrate. For a number of materials this planar approach is not feasible, and new fabrication techniques are required to realize complex nanoscale devices. Here, we report a three-dimensional fabrication technique based on anisotropic plasma etching at an oblique angle to the sample surface. As a proof of concept, this angled-etching methodology is used to fabricate free-standing nanoscale components in bulk single-crystal diamond, including nanobeam mechanical resonators, optical waveguides, and photonic crystal and microdisk cavities. Potential applications of the fabricated prototypes range from classical and quantum photonic devices to nanomechanical-based sensors and actuators.
各种纳米级光子学、力学、电子学和光电设备都需要可扩展的薄膜制造。通常,通过在不同材料的衬底上沉积薄膜来定义器件层,而光学或电学隔离则由衬底的材料特性或通过去除衬底来提供。对于许多材料来说,这种平面方法是不可行的,需要新的制造技术来实现复杂的纳米级器件。在这里,我们报告了一种基于各向异性等离子体刻蚀的三维制造技术,该技术是在与样品表面成一定角度的情况下进行的。作为概念验证,该倾斜蚀刻方法用于在块状单晶金刚石中制造独立的纳米级组件,包括纳米梁机械谐振器、光波导以及光子晶体和微盘腔。所制造原型的潜在应用范围从经典和量子光子器件到基于纳米力学的传感器和执行器。