Bencurova Elena, Chinazzo André, Kar Bipasa, Jung Matthias, Dandekar Thomas
Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany.
Microelectronic Systems Design Research Group, Department of Electrical and Computer Engineering, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany.
Nanomaterials (Basel). 2024 Sep 22;14(18):1536. doi: 10.3390/nano14181536.
The slowdown of Moore's Law necessitates an exploration of novel computing methodologies, new materials, and advantages in chip design. Thus, carbon-based materials have promise for more energy-efficient computing systems in the future. Moreover, sustainability emerges as a new concern for the semiconductor industry. The production and recycling processes associated with current chips present huge environmental challenges. Electronic waste is a major problem, and sustainable solutions in computing must be found. In this review, we examine an alternative chip design based on nanocellulose, which also features semiconductor properties and transistors. Our review highlights that nanocellulose (NC) is a versatile material and a high-potential composite, as it can be fabricated to gain suitable electronic and semiconducting properties. NC provides ideal support for ink-printed transistors and electronics, including green paper electronics. Here, we summarise various processing procedures for nanocellulose and describe the structure of exclusively nanocellulose-based transistors. Furthermore, we survey the recent scientific efforts in organic chip design and show how fully automated production of such a full NC chip could be achieved, including a Process Design Kit (PDK), expected variation models, and a standard cell library at the logic-gate level, where multiple transistors are connected to perform basic logic operations-for instance, the NOT-AND (NAND) gate. Taking all these attractive nanocellulose features into account, we envision how chips based on nanocellulose can be fabricated using Electronic Design Automation (EDA) tool chains.
摩尔定律的放缓使得探索新型计算方法、新材料以及芯片设计优势成为必要。因此,碳基材料有望在未来实现更节能的计算系统。此外,可持续性成为半导体行业的新关注点。与当前芯片相关的生产和回收过程带来了巨大的环境挑战。电子垃圾是一个主要问题,必须找到计算领域的可持续解决方案。在本综述中,我们研究了一种基于纳米纤维素的替代芯片设计,该设计还具有半导体特性和晶体管。我们的综述强调,纳米纤维素(NC)是一种多功能材料和具有高潜力的复合材料,因为它可以通过加工获得合适的电子和半导体特性。NC为喷墨印刷晶体管和电子产品,包括绿色纸质电子产品,提供了理想的支撑。在此,我们总结了纳米纤维素的各种加工工艺,并描述了仅基于纳米纤维素的晶体管的结构。此外,我们调查了有机芯片设计方面的最新科研成果,并展示了如何实现这种全NC芯片的全自动化生产,包括一个工艺设计套件(PDK)、预期变化模型以及逻辑门级别的标准单元库,其中多个晶体管连接起来执行基本逻辑操作,例如与非(NAND)门。考虑到纳米纤维素的所有这些吸引人的特性,我们设想了如何使用电子设计自动化(EDA)工具链制造基于纳米纤维素的芯片。