Suppr超能文献

通过纵向项目得分模型检测帕金森病症状的安慰剂和药物效应。

Detecting placebo and drug effects on Parkinson's disease symptoms by longitudinal item-score models.

机构信息

Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, London, UK.

Department of Pharmacy, Uppsala University, Uppsala, Sweden.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2021 Apr;10(4):309-317. doi: 10.1002/psp4.12601.

Abstract

This study tested the hypothesis that analyzing longitudinal item scores of the Unified Parkinson's Disease Rating Scale could allow a smaller trial size and describe a drug's effect on symptom progression. Two historical studies of the dopaminergic drug ropinirole were analyzed: a cross-over formulation comparison trial in 161 patients with early-stage Parkinson's disease, and a 24-week, parallel-group, placebo-controlled efficacy trial in 393 patients with advanced-stage Parkinson's disease. We applied item response theory to estimate the patients' symptom severity and developed a longitudinal model using the symptom severity to describe the time course of the placebo response and the drug effect on the time course. Similarly, we developed a longitudinal model using the total score. We then compared sample size needs for drug effect detection using these two different models. Total score modeling estimated median changes from baseline at 24 weeks (90% confidence interval) of -3.7 (-5.4 to -2.0) and -9.3 (-11 to -7.3) points by placebo and ropinirole. Comparable changes were estimated (with slightly higher precision) by item-score modeling as -2.0 (-4.0 to -1.0) and -9.0 (-11 to -8.0) points. The treatment duration was insufficient to estimate the symptom progression rate; hence the drug effect on the progression could not be assessed. The trial sizes to detect a drug effect with 80% power on total score and on symptom severity were estimated (at the type I error level of 0.05) as 88 and 58, respectively. Longitudinal item response analysis could markedly reduce sample size; it also has the potential for assessing drug effects on disease progression in longer trials.

摘要

这项研究检验了一个假设,即分析统一帕金森病评定量表的纵向项目评分可以减少试验规模,并描述药物对症状进展的影响。分析了两种历史上的多巴胺药物罗匹尼罗研究:161 例早期帕金森病患者的交叉配方比较试验和 393 例晚期帕金森病患者的 24 周、平行组、安慰剂对照疗效试验。我们应用项目反应理论来估计患者的症状严重程度,并使用症状严重程度开发了一个纵向模型,以描述安慰剂反应和药物对时间过程的影响的时间过程。同样,我们使用总分开发了一个纵向模型。然后,我们比较了使用这两种不同模型检测药物效果的样本量需求。总分建模估计 24 周时从基线的中位数变化(90%置信区间)为-3.7(-5.4 至-2.0)和-9.3(-11 至-7.3)点的安慰剂和罗匹尼罗。项目评分建模估计的类似变化(精度略高)为-2.0(-4.0 至-1.0)和-9.0(-11 至-8.0)点。治疗时间不足以估计症状进展率;因此,无法评估药物对进展的影响。以 80%的功效检测总分和症状严重程度的药物效果的试验规模估计(在 0.05 的Ⅰ型错误水平)分别为 88 和 58。纵向项目反应分析可以显著减少样本量;它还有潜力在更长时间的试验中评估药物对疾病进展的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1f0/8099436/49e50060435d/PSP4-10-309-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验