Suppr超能文献

纵向项目反应理论模型在帕金森病进展建模中的应用。

Application of longitudinal item response theory models to modeling Parkinson's disease progression.

机构信息

University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Critical Path Institute, Tucson, Arizona, USA.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2022 Oct;11(10):1382-1392. doi: 10.1002/psp4.12853. Epub 2022 Aug 9.

Abstract

The Movement Disorder Society revised version of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts 2 and 3 reflect patient-reported functional impact and clinician-reported severity of motor signs of Parkinson's disease (PD), respectively. Total scores are common clinical outcomes but may obscure important time-based changes in items. We aim to analyze longitudinal disease progression based on MDS-UPRDS parts 2 and 3 item-level responses over time and as functions of Hoehn & Yahr (H&Y) stages 1 and 2 for subjects with early PD. The longitudinal item response theory (IRT) modeling is a novel statistical method addressing limitations in traditional linear regression approaches, such as ignoring varying item sensitivities and the sum score balancing out improvements and declines. We utilized a harmonized dataset consisting of six studies with 3573 subjects with early PD and 14,904 visits, and mean follow-up time of 2.5 years (±1.57). We applied both a unidimensional (each part separately) and multidimensional (both parts combined) longitudinal IRT models. We assessed the progression rates for both parts, anchored to baseline H&Y stages 1 and 2. Both the uni- and multidimensional longitudinal IRT models indicate significant worsening time effects in both parts 2 and 3. Baseline H&Y stage 2 was associated with significantly higher baseline severities, but slower progression rates in both parts, as compared with stage 1. Patients with baseline H&Y stage 1 demonstrated slower progression in part 2 severity compared to part 3, whereas patients with baseline H&Y stage 2 progressed faster in part 2 than part 3. The multidimensional model had a superior fit compared to the unidimensional models and it had excellent model performance.

摘要

运动障碍协会修订的帕金森病统一评定量表(MDS-UPDRS)第 2 部分和第 3 部分分别反映了患者报告的帕金森病(PD)功能影响和临床医生报告的运动体征严重程度。总评分是常见的临床结果,但可能掩盖了项目在时间上的重要变化。我们旨在分析基于 MDS-UPRDS 第 2 部分和第 3 部分项目水平反应的纵向疾病进展,以及随着时间的推移和 Hoehn 和 Yahr(H&Y)分期 1 和 2 的变化,用于早期 PD 患者。纵向项目反应理论(IRT)模型是一种新颖的统计方法,解决了传统线性回归方法的局限性,例如忽略了不同项目的敏感性以及总分平衡了改善和下降。我们利用了一个包含六个研究的协调数据集,其中有 3573 名早期 PD 患者和 14904 次就诊,平均随访时间为 2.5 年(±1.57)。我们应用了一维(每个部分单独)和多维(两个部分结合)纵向 IRT 模型。我们评估了两个部分的进展速度,以基线 H&Y 分期 1 和 2 为参照。一维和多维纵向 IRT 模型都表明,第 2 部分和第 3 部分的时间影响都有显著恶化。与分期 1 相比,基线 H&Y 分期 2 与更高的基线严重程度和更慢的进展速度相关。与第 3 部分相比,基线 H&Y 分期 1 的患者在第 2 部分严重程度的进展较慢,而基线 H&Y 分期 2 的患者在第 2 部分的进展快于第 3 部分。多维模型比一维模型具有更好的拟合度,且具有出色的模型性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c40/9574723/f2ba1834f6b3/PSP4-11-1382-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验