Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina, USA.
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Mov Disord. 2022 Sep;37(9):1904-1914. doi: 10.1002/mds.29154. Epub 2022 Jul 16.
Longitudinal item response theory (IRT) models previously suggested that the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor examination has two salient domains, tremor and nontremor, that progress in time and in response to treatment differently.
Apply longitudinal IRT modeling, separating tremor and nontremor domains, to reanalyze outcomes in the previously published clinical trial (Study of Urate Elevation in Parkinson's Disease, Phase 3) that showed no overall treatment effects.
We applied unidimensional and multidimensional longitudinal IRT models to MDS-UPDRS motor examination items in 298 participants with Parkinson's disease from the Study of Urate Elevation in Parkinson's Disease, Phase 3 (placebo vs. inosine) study. We separated 10 tremor items from 23 nontremor items and used Bayesian inference to estimate progression rates and sensitivity to treatment in overall motor severity and tremor and nontremor domains.
The progression rate was faster in the tremor domain than the nontremor domain before levodopa treatment. Inosine treatment had no effect on either domain relative to placebo. Levodopa treatment was associated with greater slowing of progression in the tremor domain than the nontremor domain regardless of inosine exposure. Linear patterns of progression were observed. Despite different domain-specific progression patterns, tremor and nontremor severities at baseline and over time were significantly correlated.
Longitudinal IRT analysis is a novel statistical method addressing limitations of traditional linear regression approaches. It is particularly useful because it can simultaneously monitor changes in different, but related, domains over time and in response to treatment interventions. We suggest that in neurological diseases with distinct impairment domains, clinical or anatomical, this application may identify patterns of change unappreciated by standard statistical methods. © 2022 International Parkinson and Movement Disorder Society.
纵向项目反应理论(IRT)模型先前表明,运动障碍协会统一帕金森病评定量表(MDS-UPDRS)运动检查有两个明显的领域,震颤和非震颤,它们随时间推移和对治疗的反应而不同。
应用纵向 IRT 建模,分离震颤和非震颤领域,重新分析先前发表的临床试验(帕金森病尿酸升高研究,第 3 阶段)的结果,该试验显示没有总体治疗效果。
我们应用单维和多维纵向 IRT 模型对来自帕金森病尿酸升高研究,第 3 阶段(安慰剂与肌苷)研究的 298 名帕金森病患者的 MDS-UPDRS 运动检查项目进行分析。我们将 10 个震颤项目与 23 个非震颤项目分开,并使用贝叶斯推理来估计总体运动严重程度以及震颤和非震颤领域的进展速度和对治疗的敏感性。
在左旋多巴治疗之前,震颤域的进展速度比非震颤域快。与安慰剂相比,肌苷治疗对两个领域都没有影响。无论是否使用肌苷,左旋多巴治疗都与震颤域的进展速度比非震颤域慢有关。观察到线性进展模式。尽管存在不同的特定领域进展模式,但震颤和非震颤严重程度在基线和随时间的变化与基线和随时间的变化显著相关。
纵向 IRT 分析是一种新颖的统计方法,解决了传统线性回归方法的局限性。它特别有用,因为它可以同时监测不同但相关领域随时间和治疗干预的变化。我们建议,在具有明显损伤领域的神经疾病中,如临床或解剖学领域,这种应用可能会发现标准统计方法无法识别的变化模式。© 2022 国际帕金森病和运动障碍协会。