Suppr超能文献

CopulaNet:直接从多序列比对中学习残基协同进化用于蛋白质结构预测。

CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction.

作者信息

Ju Fusong, Zhu Jianwei, Shao Bin, Kong Lupeng, Liu Tie-Yan, Zheng Wei-Mou, Bu Dongbo

机构信息

Key Lab of Intelligent Information Processing, State Key Lab of Computer Architecture, Big-data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Commun. 2021 May 5;12(1):2535. doi: 10.1038/s41467-021-22869-8.

Abstract

Residue co-evolution has become the primary principle for estimating inter-residue distances of a protein, which are crucially important for predicting protein structure. Most existing approaches adopt an indirect strategy, i.e., inferring residue co-evolution based on some hand-crafted features, say, a covariance matrix, calculated from multiple sequence alignment (MSA) of target protein. This indirect strategy, however, cannot fully exploit the information carried by MSA. Here, we report an end-to-end deep neural network, CopulaNet, to estimate residue co-evolution directly from MSA. The key elements of CopulaNet include: (i) an encoder to model context-specific mutation for each residue; (ii) an aggregator to model residue co-evolution, and thereafter estimate inter-residue distances. Using CASP13 (the 13th Critical Assessment of Protein Structure Prediction) target proteins as representatives, we demonstrate that CopulaNet can predict protein structure with improved accuracy and efficiency. This study represents a step toward improved end-to-end prediction of inter-residue distances and protein tertiary structures.

摘要

残基协同进化已成为估计蛋白质残基间距离的主要原则,而这些距离对于预测蛋白质结构至关重要。大多数现有方法采用间接策略,即基于一些手工制作的特征推断残基协同进化,例如从目标蛋白质的多序列比对(MSA)计算得到的协方差矩阵。然而,这种间接策略无法充分利用MSA所携带的信息。在此,我们报告了一种端到端深度神经网络CopulaNet,用于直接从MSA估计残基协同进化。CopulaNet的关键要素包括:(i)一个编码器,用于对每个残基的上下文特异性突变进行建模;(ii)一个聚合器,用于对残基协同进化进行建模,进而估计残基间距离。以CASP13(第13届蛋白质结构预测关键评估)目标蛋白质为代表,我们证明CopulaNet能够以更高的准确性和效率预测蛋白质结构。这项研究朝着改进残基间距离和蛋白质三级结构的端到端预测迈出了一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edba/8100175/11183cbf3e39/41467_2021_22869_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验