Nguyen Viet Thanh Duy, Nguyen Nhan D, Hy Truong Son
FPT Software AI Center, Ho Chi Minh City, Vietnam.
Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA.
Struct Dyn. 2024 Nov 25;11(6):064102. doi: 10.1063/4.0000271. eCollection 2024 Nov.
Proteins, serving as the fundamental architects of biological processes, interact with ligands to perform a myriad of functions essential for life. Designing functional ligand-binding proteins is pivotal for advancing drug development and enhancing therapeutic efficacy. In this study, we introduce ProteinReDiff, an diffusion framework targeting the redesign of ligand-binding proteins. Using equivariant diffusion-based generative models, ProteinReDiff enables the creation of high-affinity ligand-binding proteins without the need for detailed structural information, leveraging instead the potential of initial protein sequences and ligand SMILES strings. Our evaluations across sequence diversity, structural preservation, and ligand binding affinity underscore ProteinReDiff's potential to advance computational drug discovery and protein engineering.
蛋白质作为生物过程的基本构建者,与配体相互作用以执行生命所必需的无数功能。设计功能性配体结合蛋白对于推进药物开发和提高治疗效果至关重要。在本研究中,我们引入了ProteinReDiff,这是一种针对配体结合蛋白重新设计的扩散框架。利用基于等变扩散的生成模型,ProteinReDiff能够创建高亲和力的配体结合蛋白,无需详细的结构信息,而是利用初始蛋白质序列和配体SMILES字符串的潜力。我们在序列多样性、结构保留和配体结合亲和力方面的评估强调了ProteinReDiff在推进计算药物发现和蛋白质工程方面的潜力。