Suppr超能文献

分析四重序列比对对基于深度学习的蛋白质残基间距离预测的影响。

Analyzing effect of quadruple multiple sequence alignments on deep learning based protein inter-residue distance prediction.

机构信息

Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA.

Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

Sci Rep. 2021 Apr 7;11(1):7574. doi: 10.1038/s41598-021-87204-z.

Abstract

Protein 3D structure prediction has advanced significantly in recent years due to improving contact prediction accuracy. This improvement has been largely due to deep learning approaches that predict inter-residue contacts and, more recently, distances using multiple sequence alignments (MSAs). In this work we present AttentiveDist, a novel approach that uses different MSAs generated with different E-values in a single model to increase the co-evolutionary information provided to the model. To determine the importance of each MSA's feature at the inter-residue level, we added an attention layer to the deep neural network. We show that combining four MSAs of different E-value cutoffs improved the model prediction performance as compared to single E-value MSA features. A further improvement was observed when an attention layer was used and even more when additional prediction tasks of bond angle predictions were added. The improvement of distance predictions were successfully transferred to achieve better protein tertiary structure modeling.

摘要

近年来,由于接触预测准确性的提高,蛋白质 3D 结构预测有了显著进展。这一改进在很大程度上要归功于深度学习方法,这些方法使用多重序列比对 (MSA) 预测残基间的接触,以及最近预测距离。在这项工作中,我们提出了 AttentiveDist,这是一种新颖的方法,它在单个模型中使用不同 E 值生成的不同 MSAs 来增加提供给模型的共进化信息。为了确定每个 MSA 在残基水平上的特征的重要性,我们在深度神经网络中添加了一个注意力层。我们表明,与单个 E 值 MSA 特征相比,结合四个不同 E 值截止值的 MSAs 可提高模型预测性能。当使用注意力层时观察到进一步的改进,而当添加键角预测等额外预测任务时则观察到更多的改进。距离预测的改进成功地转移,以实现更好的蛋白质三级结构建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d82/8027171/eb9cf396979f/41598_2021_87204_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验