KTH Royal Institute of Technology, Science for Life Laboratory, Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden.
Åbo Akademi University, Faculty of Science and Engineering, Environmental and Marine Biology, Åbo, Finland.
ISME J. 2021 Oct;15(10):3034-3049. doi: 10.1038/s41396-021-00985-z. Epub 2021 May 5.
Bacterioplankton are main drivers of biogeochemical cycles and important components of aquatic food webs. While sequencing-based studies have revealed how bacterioplankton communities are structured in time and space, relatively little is known about intraspecies diversity patterns and their ecological relevance. Here, we use the newly developed software POGENOM (POpulation GENomics from Metagenomes) to investigate genomic diversity and differentiation in metagenome-assembled genomes from the Baltic Sea, and investigate their genomic variation using metagenome data spanning a 1700 km transect and covering seasonal variation at one station. The majority of the investigated species, representing several major bacterioplankton clades, displayed population structures correlating significantly with environmental factors such as salinity and temperature. Population differentiation was more pronounced over spatial than temporal scales. We discovered genes that have undergone adaptation to different salinity regimes, potentially responsible for the populations' existence along with the salinity range. This in turn implies the broad existence of ecotypes that may remain undetected by rRNA gene sequencing. Our findings emphasize the importance of physiological barriers, and highlight the role of adaptive divergence as a structuring mechanism of bacterioplankton species.
细菌浮游生物是生物地球化学循环的主要驱动因素,也是水生食物网的重要组成部分。虽然基于测序的研究已经揭示了细菌浮游生物群落如何随时间和空间而构建,但对于种内多样性模式及其生态相关性的了解相对较少。在这里,我们使用新开发的软件 POGENOM(宏基因组中的种群基因组学)来研究波罗的海宏基因组组装基因组中的基因组多样性和分化,并使用跨越 1700 公里的海洋宏基因组数据和一个站点的季节性变化来研究它们的基因组变异。所研究的大多数物种代表了几个主要的细菌浮游生物类群,它们的种群结构与盐度和温度等环境因素显著相关。种群分化在空间尺度上比时间尺度上更为明显。我们发现了一些基因,这些基因已经适应了不同的盐度环境,可能是这些种群存在于盐度范围内的原因。这反过来又意味着可能存在广泛的生态型,而这些生态型可能无法通过 rRNA 基因测序检测到。我们的研究结果强调了生理障碍的重要性,并突出了适应分化作为细菌浮游生物物种结构形成机制的作用。
Genome Biol. 2015-12-14
Sci Total Environ. 2019-12-5
Environ Sci Pollut Res Int. 2017-12-11
Front Microbiol. 2016-5-12
Commun Biol. 2020-3-13
Nat Biotechnol. 2018-8-27
Genome Biol. 2017-9-21
PLoS One. 2017-7-28
Mol Biol Evol. 2017-8-1