Suppr超能文献

利用收缩特征从X射线和CT图像中对冠状病毒(COVID-19)进行分类。

Classification of Coronavirus (COVID-19) from X-ray and CT images using shrunken features.

作者信息

Öztürk Şaban, Özkaya Umut, Barstuğan Mücahid

机构信息

Electrical and Electronics Engineering Amasya University Amasya Turkey.

Electrical and Electronics Engineering Konya Technical University Konya Turkey.

出版信息

Int J Imaging Syst Technol. 2021 Mar;31(1):5-15. doi: 10.1002/ima.22469. Epub 2020 Aug 18.

Abstract

Necessary screenings must be performed to control the spread of the COVID-19 in daily life and to make a preliminary diagnosis of suspicious cases. The long duration of pathological laboratory tests and the suspicious test results led the researchers to focus on different fields. Fast and accurate diagnoses are essential for effective interventions for COVID-19. The information obtained by using X-ray and Computed Tomography (CT) images is vital in making clinical diagnoses. Therefore it is aimed to develop a machine learning method for the detection of viral epidemics by analyzing X-ray and CT images. In this study, images belonging to six situations, including coronavirus images, are classified using a two-stage data enhancement approach. Since the number of images in the dataset is deficient and unbalanced, a shallow image augmentation approach was used in the first phase. It is more convenient to analyze these images with hand-crafted feature extraction methods because the dataset newly created is still insufficient to train a deep architecture. Therefore, the Synthetic minority over-sampling technique algorithm is the second data enhancement step of this study. Finally, the feature vector is reduced in size by using a stacked auto-encoder and principal component analysis methods to remove interconnected features in the feature vector. According to the obtained results, it is seen that the proposed method has leveraging performance, especially to make the diagnosis of COVID-19 in a short time and effectively. Also, it is thought to be a source of inspiration for future studies for deficient and unbalanced datasets.

摘要

必须进行必要的筛查,以控制新冠肺炎在日常生活中的传播,并对疑似病例进行初步诊断。病理实验室检测时间长且检测结果可疑,这促使研究人员将重点放在不同领域。快速准确的诊断对于新冠肺炎的有效干预至关重要。利用X射线和计算机断层扫描(CT)图像获得的信息对于临床诊断至关重要。因此,旨在通过分析X射线和CT图像开发一种用于检测病毒流行的机器学习方法。在本研究中,使用两阶段数据增强方法对包括冠状病毒图像在内的六种情况的图像进行分类。由于数据集中的图像数量不足且不均衡,在第一阶段使用了一种浅层图像增强方法。由于新创建的数据集仍不足以训练深度架构,因此使用手工特征提取方法分析这些图像更为方便。因此,合成少数过采样技术算法是本研究的第二个数据增强步骤。最后,通过使用堆叠自动编码器和主成分分析方法来减小特征向量的大小,以去除特征向量中的相互关联特征。根据获得的结果,可以看出所提出的方法具有良好的性能,特别是在短时间内有效地进行新冠肺炎诊断方面。此外,它被认为是未来针对不足和不均衡数据集研究的灵感来源。

相似文献

8
Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images.基于胸部 X 光图像的 COVID-19 分类深度学习算法。
Comput Math Methods Med. 2021 Nov 9;2021:9269173. doi: 10.1155/2021/9269173. eCollection 2021.

引用本文的文献

9
A robust approach for endotracheal tube localization in chest radiographs.一种用于胸部X光片中气管插管定位的可靠方法。
Front Artif Intell. 2023 May 12;6:1181812. doi: 10.3389/frai.2023.1181812. eCollection 2023.

本文引用的文献

3
CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV).2019 新型冠状病毒(2019-nCoV)的 CT 影像学特征。
Radiology. 2020 Apr;295(1):202-207. doi: 10.1148/radiol.2020200230. Epub 2020 Feb 4.
9
Radiographic and CT Features of Viral Pneumonia.病毒性肺炎的影像学和 CT 特征。
Radiographics. 2018 May-Jun;38(3):719-739. doi: 10.1148/rg.2018170048.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验