Suppr超能文献

药剂师对用于识别非典型药物医嘱的机器学习模型的看法。

Pharmacists' perceptions of a machine learning model for the identification of atypical medication orders.

机构信息

Pharmacy Practice Research Unit and Department of Pharmacy, CHU Sainte-Justine, Montreal, Quebec, Canada.

Department of Computer Science and Software Engineering, Université Laval, Quebec City, Quebec, Canada.

出版信息

J Am Med Inform Assoc. 2021 Jul 30;28(8):1712-1718. doi: 10.1093/jamia/ocab071.

Abstract

OBJECTIVES

The study sought to assess the clinical performance of a machine learning model aiming to identify unusual medication orders.

MATERIALS AND METHODS

This prospective study was conducted at CHU Sainte-Justine, Canada, from April to August 2020. An unsupervised machine learning model based on GANomaly and 2 baselines were trained to learn medication order patterns from 10 years of data. Clinical pharmacists dichotomously (typical or atypical) labeled orders and pharmacological profiles (patients' medication lists). Confusion matrices, areas under the precision-recall curve (AUPRs), and F1 scores were calculated.

RESULTS

A total of 12 471 medication orders and 1356 profiles were labeled by 25 pharmacists. Medication order predictions showed a precision of 35%, recall (sensitivity) of 26%, and specificity of 97% as compared with pharmacist labels, with an AUPR of 0.25 and an F1 score of 0.30. Profile predictions showed a precision of 49%, recall of 75%, and specificity of 82%, with an AUPR of 0.60, and an F1 score of 0.59. The model performed better than the baselines. According to the pharmacists, the model was a useful screening tool, and 9 of 15 participants preferred predictions by medication, rather than by profile.

DISCUSSION

Predictions for profiles had higher F1 scores and recall compared with medication order predictions. Although the performance was much better for profile predictions, pharmacists generally preferred medication order predictions.

CONCLUSIONS

Based on the AUPR, this model showed better performance for the identification of atypical pharmacological profiles than for medication orders. Pharmacists considered the model a useful screening tool. Improving these predictions should be prioritized in future research to maximize clinical impact.

摘要

目的

本研究旨在评估一种旨在识别异常药物医嘱的机器学习模型的临床性能。

材料和方法

本前瞻性研究于 2020 年 4 月至 8 月在加拿大 Sainte-Justine 大学医院进行。一个基于 GANomaly 的无监督机器学习模型和 2 个基线被用来从 10 年的数据中学习药物医嘱模式。临床药师将医嘱(典型或非典型)和药物概况(患者用药清单)进行二分法标记。计算混淆矩阵、精度-召回曲线下面积(AUPR)和 F1 分数。

结果

共有 25 名药师对 12471 条医嘱和 1356 条概况进行了标记。与药师标签相比,药物医嘱预测的精度为 35%,召回率(灵敏度)为 26%,特异性为 97%,AUPR 为 0.25,F1 得分为 0.30。概况预测的精度为 49%,召回率为 75%,特异性为 82%,AUPR 为 0.60,F1 得分为 0.59。该模型的表现优于基线。根据药师的说法,该模型是一种有用的筛选工具,有 9 名参与者更喜欢药物预测,而不是概况预测。

讨论

与药物医嘱预测相比,概况预测的 F1 得分和召回率更高。尽管概况预测的性能要好得多,但药师普遍更喜欢药物医嘱预测。

结论

基于 AUPR,该模型在识别非典型药物概况方面的表现优于药物医嘱。药师认为该模型是一种有用的筛选工具。在未来的研究中,应优先提高这些预测的准确性,以最大限度地发挥临床影响。

相似文献

1
Pharmacists' perceptions of a machine learning model for the identification of atypical medication orders.
J Am Med Inform Assoc. 2021 Jul 30;28(8):1712-1718. doi: 10.1093/jamia/ocab071.
4
The incidence and severity of errors in pharmacist-written discharge medication orders.
Int J Clin Pharm. 2017 Aug;39(4):722-728. doi: 10.1007/s11096-017-0468-9. Epub 2017 Jun 1.
5
Comparing the accuracy of medication order verification between pharmacists and a tech check tech model: A prospective randomised observational study.
Res Social Adm Pharm. 2018 Oct;14(10):931-935. doi: 10.1016/j.sapharm.2017.11.007. Epub 2017 Nov 15.
6
Optimizing pharmacists' detection of prescribing errors: Comparison of on-ward and central pharmacy services.
J Clin Pharm Ther. 2021 Jun;46(3):738-743. doi: 10.1111/jcpt.13339. Epub 2021 Mar 25.
9
The potential for leveraging machine learning to filter medication alerts.
J Am Med Inform Assoc. 2022 Apr 13;29(5):891-899. doi: 10.1093/jamia/ocab292.
10
Pharmacist recognition of and adherence to medication-use policies and safety practices.
Am J Health Syst Pharm. 2007 Oct 1;64(19):2050-4. doi: 10.2146/ajhp070001.

引用本文的文献

1
Overcoming barriers and enabling artificial intelligence adoption in allied health clinical practice: A qualitative study.
Digit Health. 2025 Feb 3;11:20552076241311144. doi: 10.1177/20552076241311144. eCollection 2025 Jan-Dec.
3
Machine learning-based risk prediction model for medication administration errors in neonatal intensive care units: A prospective direct observational study.
Digit Health. 2024 Oct 18;10:20552076241286434. doi: 10.1177/20552076241286434. eCollection 2024 Jan-Dec.
4
Quality of interaction between clinicians and artificial intelligence systems. A systematic review.
Future Healthc J. 2024 Aug 17;11(3):100172. doi: 10.1016/j.fhj.2024.100172. eCollection 2024 Sep.
9
Prediction of Prednisolone Dose Correction Using Machine Learning.
J Healthc Inform Res. 2023 Feb 15;7(1):84-103. doi: 10.1007/s41666-023-00128-3. eCollection 2023 Mar.
10
Detecting Unusual Intravenous Infusion Alerting Patterns with Machine Learning Algorithms.
Biomed Instrum Technol. 2022 Apr 1;56(2):58-70. doi: 10.2345/0899-8205-56.2.58.

本文引用的文献

2
Demystifying artificial intelligence in pharmacy.
Am J Health Syst Pharm. 2020 Sep 18;77(19):1556-1570. doi: 10.1093/ajhp/zxaa218.
4
Hospital Pharmacists' Perceptions and Decision-Making Related to Drug-Drug Interactions.
Can J Hosp Pharm. 2019 Jul-Aug;72(4):288-294. Epub 2018 Aug 31.
6
A systematic approach to optimize electronic health record medication alerts in a health system.
Am J Health Syst Pharm. 2019 Apr 8;76(8):530-536. doi: 10.1093/ajhp/zxz012.
7
Using artificial intelligence in health-system pharmacy practice: Finding new patterns that matter.
Am J Health Syst Pharm. 2019 Apr 17;76(9):622-627. doi: 10.1093/ajhp/zxz018.
8
DDC-Outlier: Preventing Medication Errors Using Unsupervised Learning.
IEEE J Biomed Health Inform. 2019 Mar;23(2):874-881. doi: 10.1109/JBHI.2018.2828028. Epub 2018 Apr 17.
9
Decaying relevance of clinical data towards future decisions in data-driven inpatient clinical order sets.
Int J Med Inform. 2017 Jun;102:71-79. doi: 10.1016/j.ijmedinf.2017.03.006. Epub 2017 Mar 18.
10
Screening for medication errors using an outlier detection system.
J Am Med Inform Assoc. 2017 Mar 1;24(2):281-287. doi: 10.1093/jamia/ocw171.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验