Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, CA, USA.
FLIM LABS, Rome, Italy.
Nat Methods. 2021 May;18(5):542-550. doi: 10.1038/s41592-021-01108-4. Epub 2021 Apr 15.
Fluorescence lifetime imaging microscopy (FLIM) and spectral imaging are two broadly applied methods for increasing dimensionality in microscopy. However, their combination is typically inefficient and slow in terms of acquisition and processing. By integrating technological and computational advances, we developed a robust and unbiased spectral FLIM (S-FLIM) system. Our method, Phasor S-FLIM, combines true parallel multichannel digital frequency domain electronics with a multidimensional phasor approach to extract detailed and precise information about the photophysics of fluorescent specimens at optical resolution. To show the flexibility of the Phasor S-FLIM technology and its applications to the biological and biomedical field, we address four common, yet challenging, problems: the blind unmixing of spectral and lifetime signatures from multiple unknown species, the unbiased bleedthrough- and background-free Förster resonance energy transfer analysis of biosensors, the photophysical characterization of environment-sensitive probes in living cells and parallel four-color FLIM imaging in tumor spheroids.
荧光寿命成像显微镜(FLIM)和光谱成像都是用于增加显微镜维度的两种广泛应用的方法。然而,它们的组合在采集和处理方面通常效率低下且速度较慢。通过集成技术和计算方面的进步,我们开发了一种强大且无偏的光谱 FLIM(S-FLIM)系统。我们的方法,相子 S-FLIM,将真正的平行多通道数字频域电子学与多维相子方法相结合,以提取关于荧光标本的光物理的详细和精确信息,具有光学分辨率。为了展示相子 S-FLIM 技术的灵活性及其在生物和生物医学领域的应用,我们解决了四个常见但具有挑战性的问题:从多个未知物种中盲目分离光谱和寿命特征、无偏的福斯特共振能量转移分析生物传感器中的透过率和背景、活细胞中环境敏感探针的光物理特性以及肿瘤球体的平行四色 FLIM 成像。