Rojas-Vázquez Sara, Blasco-Chamarro Laura, López-Fabuel Irene, Martínez-Máñez Ramón, Fariñas Isabel
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain.
Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain.
Front Neurosci. 2021 Apr 20;15:666881. doi: 10.3389/fnins.2021.666881. eCollection 2021.
The adult mammalian brain contains distinct neurogenic niches harboring populations of neural stem cells (NSCs) with the capacity to sustain the generation of specific subtypes of neurons during the lifetime. However, their ability to produce new progeny declines with age. The microenvironment of these specialized niches provides multiple cellular and molecular signals that condition NSC behavior and potential. Among the different niche components, vasculature has gained increasing interest over the years due to its undeniable role in NSC regulation and its therapeutic potential for neurogenesis enhancement. NSCs are uniquely positioned to receive both locally secreted factors and adhesion-mediated signals derived from vascular elements. Furthermore, studies of parabiosis indicate that NSCs are also exposed to blood-borne factors, sensing and responding to the systemic circulation. Both structural and functional alterations occur in vasculature with age at the cellular level that can affect the proper extrinsic regulation of NSCs. Additionally, blood exchange experiments in heterochronic parabionts have revealed that age-associated changes in blood composition also contribute to adult neurogenesis impairment in the elderly. Although the mechanisms of vascular- or blood-derived signaling in aging are still not fully understood, a general feature of organismal aging is the accumulation of senescent cells, which act as sources of inflammatory and other detrimental signals that can negatively impact on neighboring cells. This review focuses on the interactions between vascular senescence, circulating pro-senescence factors and the decrease in NSC potential during aging. Understanding the mechanisms of NSC dynamics in the aging brain could lead to new therapeutic approaches, potentially include senolysis, to target age-dependent brain decline.
成年哺乳动物的大脑包含不同的神经发生微环境,其中存在神经干细胞(NSCs)群体,这些神经干细胞有能力在整个生命周期中持续产生特定类型的神经元。然而,它们产生新后代的能力会随着年龄的增长而下降。这些特殊微环境的微环境提供了多种细胞和分子信号,这些信号调节神经干细胞的行为和潜能。在不同的微环境组成部分中,血管系统近年来越来越受到关注,因为它在神经干细胞调节中具有不可否认的作用,以及在增强神经发生方面的治疗潜力。神经干细胞处于独特的位置,既能接收局部分泌的因子,也能接收来自血管成分的黏附介导信号。此外,联体生活实验表明,神经干细胞也会接触到血液传播的因子,感知并对全身循环做出反应。随着年龄的增长,血管系统在细胞水平上会发生结构和功能的改变,这可能会影响神经干细胞的适当外在调节。此外,异时联体动物的血液交换实验表明,血液成分中与年龄相关的变化也会导致老年人成年神经发生受损。尽管衰老过程中血管或血液衍生信号的机制仍未完全了解,但生物体衰老的一个普遍特征是衰老细胞的积累,这些衰老细胞会产生炎症和其他有害信号,对邻近细胞产生负面影响。这篇综述重点关注衰老过程中血管衰老、循环促衰老因子与神经干细胞潜能下降之间的相互作用。了解衰老大脑中神经干细胞动态变化的机制可能会带来新的治疗方法,可能包括衰老细胞溶解,以针对与年龄相关的脑功能衰退。