Suppr超能文献

利用机器学习通过合并症预测重症患者的急性肾损伤。

Predicting acute kidney injury in critically ill patients using comorbid conditions utilizing machine learning.

作者信息

Shawwa Khaled, Ghosh Erina, Lanius Stephanie, Schwager Emma, Eshelman Larry, Kashani Kianoush B

机构信息

Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.

Philips Research North America, Cambridge, MA, USA.

出版信息

Clin Kidney J. 2020 Sep 30;14(5):1428-1435. doi: 10.1093/ckj/sfaa145. eCollection 2021 May.

Abstract

BACKGROUND

Acute kidney injury (AKI) carries a poor prognosis. Its incidence is increasing in the intensive care unit (ICU). Our purpose in this study is to develop and externally validate a model for predicting AKI in the ICU using patient data present prior to ICU admission.

METHODS

We used data of 98 472 adult ICU admissions at Mayo Clinic between 1 January 2005 and 31 December 2017 and 51 801 encounters from Medical Information Mart for Intensive Care III (MIMIC-III) cohort. A gradient-boosting model was trained on 80% of the Mayo Clinic cohort using a set of features to predict AKI acquired in the ICU.

RESULTS

AKI was identified in 39 307 (39.9%) encounters in the Mayo Clinic cohort. Patients who developed AKI in the ICU were older and had higher ICU and in-hospital mortality compared to patients without AKI. A 30-feature model yielded an area under the receiver operating curve of 0.690 [95% confidence interval (CI) 0.682-0.697] in the Mayo Clinic cohort set and 0.656 (95% CI 0.648-0.664) in the MIMIC-III cohort.

CONCLUSIONS

Using machine learning, AKI among ICU patients can be predicted using information available prior to admission. This model is independent of ICU information, making it valuable for stratifying patients at admission.

摘要

背景

急性肾损伤(AKI)预后较差。其在重症监护病房(ICU)的发病率正在上升。我们开展本研究的目的是利用ICU入院前的患者数据开发并外部验证一种用于预测ICU中AKI的模型。

方法

我们使用了梅奥诊所2005年1月1日至2017年12月31日期间98472例成人ICU入院数据以及重症监护医学信息集市三期(MIMIC-III)队列中的51801次就诊数据。使用一组特征在梅奥诊所队列的80%数据上训练梯度提升模型,以预测在ICU中发生的AKI。

结果

在梅奥诊所队列的39307次(39.9%)就诊中发现了AKI。与未发生AKI的患者相比,在ICU中发生AKI的患者年龄更大,ICU和住院死亡率更高。在梅奥诊所队列集中,一个包含30个特征的模型的受试者工作特征曲线下面积为0.690[95%置信区间(CI)0.682 - 0.697],在MIMIC-III队列中为0.656(95%CI 0.648 - 0.664)。

结论

使用机器学习,可以利用入院前可用的信息预测ICU患者中的AKI。该模型独立于ICU信息,对于入院时对患者进行分层很有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8c/8087133/3e4d4f9edec7/sfaa145f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验