Suppr超能文献

人工智能在肿瘤学中的应用:实施之路。

Artificial intelligence in oncology: Path to implementation.

机构信息

Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.

Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, MA, USA.

出版信息

Cancer Med. 2021 Jun;10(12):4138-4149. doi: 10.1002/cam4.3935. Epub 2021 May 7.

Abstract

In recent years, the field of artificial intelligence (AI) in oncology has grown exponentially. AI solutions have been developed to tackle a variety of cancer-related challenges. Medical institutions, hospital systems, and technology companies are developing AI tools aimed at supporting clinical decision making, increasing access to cancer care, and improving clinical efficiency while delivering safe, high-value oncology care. AI in oncology has demonstrated accurate technical performance in image analysis, predictive analytics, and precision oncology delivery. Yet, adoption of AI tools is not widespread, and the impact of AI on patient outcomes remains uncertain. Major barriers for AI implementation in oncology include biased and heterogeneous data, data management and collection burdens, a lack of standardized research reporting, insufficient clinical validation, workflow and user-design challenges, outdated regulatory and legal frameworks, and dynamic knowledge and data. Concrete actions that major stakeholders can take to overcome barriers to AI implementation in oncology include training and educating the oncology workforce in AI; standardizing data, model validation methods, and legal and safety regulations; funding and conducting future research; and developing, studying, and deploying AI tools through multidisciplinary collaboration.

摘要

近年来,肿瘤学领域的人工智能(AI)呈指数级增长。已经开发出 AI 解决方案来应对各种与癌症相关的挑战。医疗机构、医院系统和科技公司正在开发 AI 工具,旨在支持临床决策、增加癌症护理的可及性、提高临床效率,同时提供安全、高价值的肿瘤学护理。AI 在肿瘤学中的图像分析、预测分析和精准肿瘤学方面展示了准确的技术性能。然而,AI 工具的采用并不广泛,AI 对患者结果的影响仍不确定。AI 在肿瘤学中的实施面临的主要障碍包括数据存在偏差和异质性、数据管理和收集负担、缺乏标准化的研究报告、临床验证不足、工作流程和用户设计挑战、过时的监管和法律框架以及动态知识和数据。主要利益相关者可以采取具体行动来克服肿瘤学中 AI 实施的障碍,包括培训和教育肿瘤学领域的 AI 劳动力;标准化数据、模型验证方法以及法律和安全法规;为未来的研究提供资金并进行研究;通过多学科合作开发、研究和部署 AI 工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/360f/8209596/ed3b7b26dea6/CAM4-10-4138-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验