Suppr超能文献

机器学习算法预测肿瘤切除后 IV 期结直肠癌的复发。

Machine Learning Algorithms for Predicting the Recurrence of Stage IV Colorectal Cancer After Tumor Resection.

机构信息

Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Henan, China.

出版信息

Sci Rep. 2020 Feb 13;10(1):2519. doi: 10.1038/s41598-020-59115-y.

Abstract

The aim of this study is to explore the feasibility of using machine learning (ML) technology to predict postoperative recurrence risk among stage IV colorectal cancer patients. Four basic ML algorithms were used for prediction-logistic regression, decision tree, GradientBoosting and lightGBM. The research samples were randomly divided into a training group and a testing group at a ratio of 8:2. 999 patients with stage 4 colorectal cancer were included in this study. In the training group, the GradientBoosting model's AUC value was the highest, at 0.881. The Logistic model's AUC value was the lowest, at 0.734. The GradientBoosting model had the highest F1_score (0.912). In the test group, the AUC Logistic model had the lowest AUC value (0.692). The GradientBoosting model's AUC value was 0.734, which can still predict cancer progress. However, the gbm model had the highest AUC value (0.761), and the gbm model had the highest F1_score (0.974). The GradientBoosting model and the gbm model performed better than the other two algorithms. The weight matrix diagram of the GradientBoosting algorithm shows that chemotherapy, age, LogCEA, CEA and anesthesia time were the five most influential risk factors for tumor recurrence. The four machine learning algorithms can each predict the risk of tumor recurrence in patients with stage IV colorectal cancer after surgery. Among them, GradientBoosting and gbm performed best. Moreover, the GradientBoosting weight matrix shows that the five most influential variables accounting for postoperative tumor recurrence are chemotherapy, age, LogCEA, CEA and anesthesia time.

摘要

本研究旨在探讨机器学习(ML)技术预测 IV 期结直肠癌患者术后复发风险的可行性。采用四种基本的 ML 算法进行预测——逻辑回归、决策树、梯度提升和 LightGBM。研究样本按 8:2 的比例随机分为训练组和测试组。本研究共纳入 999 例 IV 期结直肠癌患者。在训练组中,梯度提升模型的 AUC 值最高,为 0.881。逻辑模型的 AUC 值最低,为 0.734。梯度提升模型的 F1_score 最高(0.912)。在测试组中,Logistic 模型的 AUC 值最低(0.692)。梯度提升模型的 AUC 值为 0.734,仍可预测癌症进展。然而,gbm 模型的 AUC 值最高(0.761),gbm 模型的 F1_score 最高(0.974)。梯度提升模型和 gbm 模型的表现优于其他两种算法。梯度提升算法的权重矩阵图显示,化疗、年龄、LogCEA、CEA 和麻醉时间是肿瘤复发的五个最具影响力的风险因素。四种机器学习算法都可以预测 IV 期结直肠癌患者术后肿瘤复发的风险。其中,梯度提升和 gbm 表现最好。此外,梯度提升权重矩阵显示,占术后肿瘤复发的五个最具影响力的变量分别是化疗、年龄、LogCEA、CEA 和麻醉时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea79/7220939/0cb433c3beae/41598_2020_59115_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验