Suppr超能文献

用于生物应用的工程持续发光纳米粒子:从生物传感/生物成像到治疗学。

Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.

机构信息

School of Medical Imaging , Tianjin Medical University , Tianjin 300203 , China.

Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China.

出版信息

Acc Chem Res. 2018 May 15;51(5):1131-1143. doi: 10.1021/acs.accounts.7b00619. Epub 2018 Apr 17.

Abstract

Persistent luminescence nanoparticles (PLNPs) are unique optical materials emitting long-lasting luminescence after ceasing excitation. Such a unique optical feature allows luminescence detection without constant external illumination to avoid the interferences of autofluorescence and scattering light from biological fluids and tissues. Besides, near-infrared (NIR) PLNPs have advantages of deep penetration and the reactivation of the persistent luminescence (PL) by red or NIR light. These features make the application of NIR-emitting PLNPs in long-term bioimaging no longer limited by the lifetime of PL. To take full advantage of PLNPs for biological applications, the versatile strategies for bridging PLNPs and biological system become increasingly significant for the design of PLNPs-based nanoprobes. In this Account, we summarize our systematic achievements in the biological applications of PLNPs from biosensing/bioimaging to theranostics with emphasizing the engineering strategies for fabricating specific PLNPs-based nanoprobes. We take surface engineering and manipulating energy transfer as the major principles to design various PLNPs-based nanoprobes based on the nature of interactions between nanoprobes and targets. We have developed target-induced formation or interruption of fluorescence resonance energy transfer systems for autofluorescence-free biosensing and imaging of cancer biomarkers. We have decorated single or dual targeting ligands on PLNPs for tumor-targeted imaging, and integrated other modal imaging agents into PLNPs for multimodal imaging. We have also employed specific functionalization for various biomedical applications including chemotherapy, photodynamic therapy, photothermal therapy, stem cells tracking and PL imaging-guided gene therapy. Besides, we have modified PLNPs with multiple functional units to achieve challenging metastatic tumor theranostics. The proposed design principle and comprehensive strategies show great potential in guiding the design of PLNPs nanoprobes and promoting further development of PLNPs in the fields of biological science and medicine. We conclude this Account by outlining the future directions to further promote the practical application of PLNPs. The novel protocols for the synthesis of small-size, monodisperse, and water-soluble PLNPs with high NIR PL intensity and superlong afterglow are the vibrant directions for the biomedical applications of PLNPs. In-depth theories and evidence on luminescence mechanism of PLNPs are highly desired for further improvement of their luminescence performance. Furthermore, other irradiations without tissue penetrating depth limit, such as X-ray, are encouraged for use in energy storage and re-excitation of PLNPs, enabling imaging in deep tissue in vivo and integrating other X-ray sensitized theranostic techniques such as computed tomography imaging and radiotherapy. Last but not least, PLNPs-based nanoprobes and the brand new hybrids of PLNPs with other nanomaterials show a bright prospect for accurate diagnosis and efficient treatment of diseases besides tumors.

摘要

持续发光纳米粒子(PLNPs)是一种独特的光学材料,在停止激发后会发出持久的发光。这种独特的光学特性允许在没有恒定外部照明的情况下进行发光检测,从而避免了生物流体和组织的自发荧光和散射光的干扰。此外,近红外(NIR)PLNPs 具有穿透深度深和通过红光或 NIR 光重新激活持久发光(PL)的优点。这些特性使得 NIR 发射 PLNPs 在长期生物成像中的应用不再受 PL 寿命的限制。为了充分利用 PLNPs 进行生物应用,将 PLNPs 与生物系统相结合的多功能策略对于设计基于 PLNPs 的纳米探针变得越来越重要。在本报告中,我们总结了我们在生物应用方面的系统成果,从生物传感/生物成像到治疗,重点介绍了用于设计基于 PLNPs 的纳米探针的工程策略。我们以表面工程和操纵能量转移为主要原则,根据纳米探针与靶标之间相互作用的性质,设计了各种基于 PLNPs 的纳米探针。我们已经开发了目标诱导的荧光共振能量转移系统的形成或中断,用于无自发荧光的癌症生物标志物的生物传感和成像。我们已经在 PLNPs 上修饰了单个或双靶向配体,用于肿瘤靶向成像,并将其他模态成像剂整合到 PLNPs 中进行多模态成像。我们还将特定的功能化用于各种生物医学应用,包括化学疗法、光动力疗法、光热疗法、干细胞跟踪和 PL 成像引导的基因治疗。此外,我们还通过多种功能单元对 PLNPs 进行了修饰,以实现具有挑战性的转移性肿瘤治疗学。所提出的设计原则和综合策略在指导 PLNPs 纳米探针的设计和促进 PLNPs 在生物科学和医学领域的进一步发展方面显示出巨大的潜力。我们通过概述进一步推动 PLNPs 实际应用的未来方向来结束本报告。用于合成具有高光致发光强度和超长余辉的小尺寸、单分散和水溶性 PLNPs 的新协议是 PLNPs 生物医学应用的充满活力的方向。对于进一步提高其发光性能,人们非常希望深入了解 PLNPs 的发光机制理论和证据。此外,还鼓励使用其他没有组织穿透深度限制的辐射,例如 X 射线,用于 PLNPs 的能量存储和再激发,从而能够在体内进行深层组织成像,并整合其他 X 射线敏化治疗技术,例如计算机断层扫描成像和放射治疗。最后但同样重要的是,基于 PLNPs 的纳米探针以及 PLNPs 与其他纳米材料的全新混合物,除了肿瘤之外,在疾病的准确诊断和有效治疗方面显示出广阔的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验