Suppr超能文献

利用近红外发光传感器纳米颗粒对珊瑚内部 O 动态的终生成像。

Lifetime Imaging of the Internal O Dynamics in Corals with near-Infrared-Emitting Sensor Nanoparticles.

机构信息

Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.

Climate Change Cluster, University of Technology Sydney, Broadway 2007, Australia.

出版信息

ACS Sens. 2024 Sep 27;9(9):4671-4679. doi: 10.1021/acssensors.4c01029. Epub 2024 Aug 23.

Abstract

Mapping of O with luminescent sensors within intact animals is challenging due to attenuation of excitation and emission light caused by tissue absorption and scattering as well as interfering background fluorescence. Here we show the application of luminescent O sensor nanoparticles (∼50-70 nm) composed of the O indicator platinum(II) tetra(4-fluoro)phenyltetrabenzoporphyrin (PtTPTBPF) immobilized in poly(methyl methacrylate--methacrylic acid) (PMMA-MA). We injected the sensor nanoparticles into the gastrovascular system of intact colony fractions of reef-building tropical corals that harbor photosynthetic microalgae in their tissues. The sensor nanoparticles are excited by red LED light (617 nm) and emit in the near-infrared (780 nm), which enhances the transmission of excitation and emission light through biological materials. This enabled us to map the internal O concentration via time-domain luminescence lifetime imaging through the outer tissue layers across several coral polyps in flowing seawater. After injection, nanoparticles dispersed within the coral tissue for several hours. While luminescence intensity imaging showed some local aggregation of sensor particles, lifetime imaging showed a more homogeneous O distribution across a larger area of the coral colony. Local stimulation of symbiont photosynthesis in corals induced oxygenation of illuminated tissue areas and formation of lateral O gradients toward surrounding respiring tissues, which were dissipated rapidly after the onset of darkness. Such measurements are key to improving our understanding of how corals regulate their internal chemical microenvironment and metabolic activity, and how they are affected by environmental stress such as ocean warming, acidification, and deoxygenation. Our experimental approach can also be adapted for O imaging in other natural systems such as biofilms, plant and animal tissues, as well as in organoids and other cell constructs, where imaging internal O conditions are relevant and challenging due to high optical density and background fluorescence.

摘要

由于组织吸收和散射以及干扰背景荧光会导致激发光和发射光衰减,因此在完整动物体内对 O 与发光传感器进行定位具有挑战性。在这里,我们展示了由固定在聚甲基丙烯酸甲酯-甲基丙烯酸(PMMA-MA)中的 O 指示剂铂 (II) 四 (4-氟) 苯基四苯并卟啉 (PtTPTBPF) 组成的发光 O 传感器纳米颗粒(约 50-70nm)的应用。我们将传感器纳米颗粒注入到含有光合微藻的造礁热带珊瑚完整群体部分的胃腔血管系统中。传感器纳米颗粒由红色 LED 光(617nm)激发并在近红外(780nm)处发射,这增强了激发和发射光通过生物材料的传输。这使我们能够通过在流动海水中穿过几个珊瑚息肉的外层组织层通过时域发光寿命成像来绘制内部 O 浓度图。注射后,纳米颗粒在珊瑚组织中分散了几个小时。虽然发光强度成像显示传感器颗粒有一些局部聚集,但寿命成像显示 O 在珊瑚群体的更大区域内分布更均匀。珊瑚中共生体光合作用的局部刺激会导致受照组织区域的氧合作用,并形成朝向周围呼吸组织的横向 O 梯度,这些梯度在黑暗开始后迅速消散。这些测量对于提高我们对珊瑚如何调节其内部化学微环境和代谢活性的理解以及它们如何受到海洋升温、酸化和脱氧等环境压力的影响至关重要。我们的实验方法也可以适应于其他自然系统(如生物膜、植物和动物组织)以及类器官和其他细胞结构中的 O 成像,在这些系统中,由于高光学密度和背景荧光,成像内部 O 条件是相关的和具有挑战性的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1acd/11443520/ba29e29c146f/se4c01029_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验