Suppr超能文献

在尼日利亚患有慢性腰痛的低识字率人群中检测焦虑和抑郁:医院焦虑抑郁量表的改编与验证

Detecting anxiety and depression among people with limited literacy living with chronic low back pain in Nigeria: adaptation and validation of the hospital anxiety and depression scale.

作者信息

Igwesi-Chidobe Chinonso Nwamaka, Muomah Rosemary C, Sorinola Isaac Olubunmi, Godfrey Emma Louise

机构信息

Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria (Enugu Campus), Nsukka, Nigeria.

Department of Physiotherapy, School of Population Health Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.

出版信息

Arch Public Health. 2021 May 7;79(1):72. doi: 10.1186/s13690-021-00586-4.

Abstract

BACKGROUND

The Hospital Anxiety and Depression Scale (HADS) is one of the most popular measures of anxiety and depression. The original HADS is mostly used in Nigeria precluding people with limited literacy. This study aimed to cross-culturally adapt and psychometrically test the HADS for rural and urban Nigerian Igbo populations with chronic low back pain (CLBP) who have limited literacy.

METHODS

The HADS was forward translated, back translated, and appraised. Face and content validity was ensured by pre-testing the translated measure among a convenience sample of twelve rural Nigerian dwellers with CLBP. Reliability utilising Cronbach's alpha, intraclass correlation coefficient, Bland-Altman plots and minimal detectable change were investigated amongst a convenience sample of 50 people living with CLBP in rural and urban Nigerian communities. Construct validity testing involving correlations between Igbo-HADS and Roland Morris Disability Questionnaire measuring self-reported back pain-specific disability, World Health Organisation Disability Assessment Schedule assessing generic self-reported disability, Fear Avoidance Beliefs Questionnaire measuring fear avoidance beliefs, and eleven-point box scale assessing pain intensity, and exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) among a random sample of 200 adults with CLBP in rural Nigerian communities were conducted.

RESULTS

Idioms and colloquialisms were difficult to adapt. Internal consistency was good (α = 0.78) and acceptable (α = 0.67) for anxiety and depression subscales respectively. Intraclass correlation coefficients were very good (ICC ≃ 0.8) for both subscales. Minimal detectable change was 6.23 and 5.06 for anxiety and depression subscales respectively. The Igbo-HADS and the anxiety subscale had strong correlations (≃ 0.7) with generic self-reported disability; moderate correlations (≃ 0.5-0.6) with pain intensity, self-reported back pain-specific disability, and fear avoidance beliefs. The depression subscale had the lowest correlations (≃ 0.3-0.4) with these outcomes. The EFA produced a two-factor structure with cross-loading of items. The CFA showed poor fit indices for the EFA structure, the original two-factor structure, and one-factor structure.

CONCLUSION

The HADS may not be suitable for assessing anxiety and depression, or emotional distress in this population due to difficulty achieving cross-cultural equivalence with western idioms; and the expression of emotional distress through somatisation in this culture.

摘要

背景

医院焦虑抑郁量表(HADS)是最常用的焦虑和抑郁测量工具之一。原始的HADS主要用于尼日利亚,不适合识字能力有限的人群。本研究旨在对HADS进行跨文化改编,并对识字能力有限的尼日利亚城乡伊博族慢性下腰痛(CLBP)患者进行心理测量测试。

方法

对HADS进行正向翻译、反向翻译和评估。通过在12名患有CLBP的尼日利亚农村居民的便利样本中对翻译后的量表进行预测试,确保了表面效度和内容效度。在尼日利亚农村和城市社区的50名CLBP患者的便利样本中,利用克朗巴哈系数、组内相关系数、布兰德-奥特曼图和最小可检测变化研究了信度。在尼日利亚农村社区的200名患有CLBP的成年人的随机样本中,进行了结构效度测试,包括伊博语-HADS与测量自我报告的背痛特异性残疾的罗兰·莫里斯残疾问卷、评估一般自我报告残疾的世界卫生组织残疾评估量表、测量恐惧回避信念的恐惧回避信念问卷以及评估疼痛强度的11点量表之间的相关性,以及探索性因素分析(EFA)和验证性因素分析(CFA)。

结果

习语和俗语难以改编。焦虑和抑郁分量表的内部一致性分别良好(α = 0.78)和可接受(α = 0.67)。两个分量表的组内相关系数都非常好(ICC ≃ 0.8)。焦虑和抑郁分量表的最小可检测变化分别为6.23和5.06。伊博语-HADS及其焦虑分量表与一般自我报告残疾有很强的相关性(≃ 0.7);与疼痛强度、自我报告的背痛特异性残疾和恐惧回避信念有中度相关性(≃ 0.5 - 0.6)。抑郁分量表与这些结果的相关性最低(≃ 0.3 - 0.4)。EFA产生了一个项目交叉负荷的双因素结构。CFA显示EFA结构、原始双因素结构和单因素结构的拟合指数较差。

结论

由于难以与西方习语实现跨文化等效性,以及在这种文化中通过躯体化表达情绪困扰,HADS可能不适用于评估该人群的焦虑、抑郁或情绪困扰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eddb/8105915/49b0ef3c0fd1/13690_2021_586_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验