Suppr超能文献

分形与波形分析

Fractals and the analysis of waveforms.

作者信息

Katz M J

机构信息

Bio-architectonics Center, CWRU School of Medicine, Cleveland, OH 44106.

出版信息

Comput Biol Med. 1988;18(3):145-56. doi: 10.1016/0010-4825(88)90041-8.

Abstract

Waveforms are planar curves--ordered collections of (x, y) point pairs--where the x values increase monotonically. One technique for numerically classifying waveforms assesses their fractal dimensionality, D. For waveforms: D = log(n)/(log(n) + log(d/L], with n = number of steps in the waveform (one less than the number of (x, y) point pairs), d = planar extent (diameter) of the waveform, and L = total length of the waveform. Under this formulation, fractal dimensions range from D = 1.0, for straight lines through approximately D = 1.15 for random-walk waveforms, to D approaching 1.5 for the most convoluted waveforms. The fractal characterization may be especially useful for analyzing and comparing complex waveforms such as electroencephalograms (EEGs).

摘要

波形是平面曲线——(x, y)点对的有序集合——其中x值单调增加。一种对波形进行数值分类的技术是评估其分形维数D。对于波形:D = log(n)/(log(n) + log(d/L)),其中n = 波形中的步数(比(x, y)点对的数量少1),d = 波形的平面范围(直径),L = 波形的总长度。根据这种公式,分形维数的范围从直线的D = 1.0,到随机游走波形的大约D = 1.15,再到最复杂波形的D接近1.5。分形特征对于分析和比较复杂波形(如脑电图(EEG))可能特别有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验