Taghilou Hoda, Rezaei Mazaher, Valizadeh Alireza, Hashemi Nosratabad Touraj, Nazari Mohammad Ali
Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran.
Department of Clinical Psychology, Beheshti Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
Cogn Neurodyn. 2024 Dec;18(6):3629-3646. doi: 10.1007/s11571-024-10088-y. Epub 2024 Mar 27.
Our ability to measure time is vital for daily life, technology use, and even mental health; however, separating pure time perception from other mental processes (like emotions) is a research challenge requiring precise tests to isolate and understand brain activity solely related to time estimation. To address this challenge, we designed an experiment utilizing hypnosis alongside electroencephalography (EEG) to assess differences in time estimation, namely underestimation and overestimation. Hypnotic induction is designed to reduce awareness and meta-awareness, facilitating a detachment from the immediate environment. This reduced information processing load minimizes the need for elaborate internal thought during hypnosis, further simplifying the cognitive landscape. To predict time perception based on brain activity during extended durations (5 min), we employed artificial intelligence techniques. Utilizing Support Vector Machines (SVMs) with both radial basis function (RBF) and polynomial kernels, we assessed their effectiveness in classifying time perception-related brain patterns. We evaluated various feature combinations and different algorithms to identify the most accurate configuration. Our analysis revealed an impressive 80.9% classification accuracy for time perception detection using the RBF kernel, demonstrating the potential of AI in decoding this complex cognitive function.
我们测量时间的能力对日常生活、技术应用乃至心理健康都至关重要;然而,将纯粹的时间感知与其他心理过程(如情绪)区分开来是一项研究挑战,需要精确的测试来分离并理解仅与时间估计相关的大脑活动。为应对这一挑战,我们设计了一项实验,利用催眠术并结合脑电图(EEG)来评估时间估计方面的差异,即低估和高估。催眠诱导旨在降低意识和元意识,促进与当前环境的分离。这种减少的信息处理负荷使催眠期间对复杂内部思考的需求最小化,进一步简化了认知情境。为了基于长时间(5分钟)内的大脑活动预测时间感知,我们采用了人工智能技术。利用具有径向基函数(RBF)和多项式核的支持向量机(SVM),我们评估了它们在对与时间感知相关的大脑模式进行分类方面的有效性。我们评估了各种特征组合和不同算法,以确定最准确的配置。我们的分析显示,使用RBF核进行时间感知检测的分类准确率高达80.9%,证明了人工智能在解码这种复杂认知功能方面的潜力。