Graduate School of Hanyang University, 222 Wangwimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
National Institute of Environmental Research, Hwangyong-ro 42, Seo-gu, Incheon 22689, Republic of Korea.
Sci Total Environ. 2021 Sep 10;786:147359. doi: 10.1016/j.scitotenv.2021.147359. Epub 2021 Apr 27.
This paper presents a road vehicle emission model that integrates an artificial neural network (ANN) model with a vehicle dynamics model to predict the instantaneous carbon dioxide (CO), nitrogen oxides (NOx) and total hydrocarbon (THC) emissions of diesel light-duty vehicles. Real-world measurement data were used to train a multi-layer feed-forward ANN model. The optimal combination of the various experimental variables was selected as the ANN input through a parametric study considering both practicality and accuracy. For CO prediction, two variables (engine speed and engine torque) are enough to develop an accurate ANN model. In order to achieve satisfactory accuracy for CO and NOx prediction, more variables were used for ANN training. The trained ANN model was used to predict road vehicle emissions by integrating the vehicle dynamics model, which was used as a supplementary tool to produce ANN input data. The integrated model is practical because it requires relatively simple data for input such as vehicle specifications, velocity, and road gradient. In the accuracy validation, the proposed model showed satisfactory prediction accuracy for road vehicle emissions.
本文提出了一种道路车辆排放模型,该模型将人工神经网络 (ANN) 模型与车辆动力学模型集成在一起,以预测柴油轻型车辆的瞬时二氧化碳 (CO)、氮氧化物 (NOx) 和总碳氢化合物 (THC) 排放。使用实际测量数据来训练多层前馈 ANN 模型。通过考虑实用性和准确性的参数研究,选择各种实验变量的最佳组合作为 ANN 的输入。对于 CO 的预测,两个变量(发动机转速和发动机扭矩)足以开发准确的 ANN 模型。为了实现 CO 和 NOx 预测的令人满意的准确性,更多的变量被用于 ANN 训练。通过集成车辆动力学模型来使用训练好的 ANN 模型来预测道路车辆排放,该模型被用作生成 ANN 输入数据的辅助工具。由于输入仅需要车辆规格、速度和道路坡度等相对简单的数据,因此该集成模型具有实用性。在准确性验证中,所提出的模型对道路车辆排放具有令人满意的预测准确性。