Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria.
Akademie für Ernährungsmedizin, Innsbruck, Austria.
Stud Health Technol Inform. 2021 May 7;279:54-61. doi: 10.3233/SHTI210089.
Hydrogen breath tests are a well-established method to help diagnose functional intestinal disorders such as carbohydrate malabsorption or small intestinal bacterial overgrowth. In this work we apply unsupervised machine learning techniques to analyze hydrogen breath test datasets. We propose a method that uses 26 internal cluster validation measures to determine a suitable number of clusters. In an induced external validation step we use a predefined categorization proposed by a medical expert. The results indicate that the majority of the considered internal validation indexes was not able to produce a reasonable clustering. Considering a predefined categorization performed by a medical expert, a novel shape-based method obtained the highest external validation measure in terms of adjusted rand index. The predefined clusterings constitute the basis of a supervised machine learning step that is part of our ongoing research.
氢气呼气试验是一种成熟的方法,可帮助诊断功能性肠病,如碳水化合物吸收不良或小肠细菌过度生长。在这项工作中,我们应用无监督机器学习技术来分析氢气呼气试验数据集。我们提出了一种使用 26 种内部聚类验证指标来确定合适聚类数的方法。在诱导的外部验证步骤中,我们使用医学专家提出的预定义分类。结果表明,大多数考虑的内部验证指标都无法产生合理的聚类。考虑到医学专家预先设定的分类,一种新的基于形状的方法在调整后的兰德指数方面获得了最高的外部验证度量。预定义的聚类构成了我们正在进行的研究中监督机器学习步骤的基础。