Suppr超能文献

无监督学习在氢呼气试验中的应用。

Unsupervised Learning for Hydrogen Breath Tests.

机构信息

Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria.

Akademie für Ernährungsmedizin, Innsbruck, Austria.

出版信息

Stud Health Technol Inform. 2021 May 7;279:54-61. doi: 10.3233/SHTI210089.

Abstract

Hydrogen breath tests are a well-established method to help diagnose functional intestinal disorders such as carbohydrate malabsorption or small intestinal bacterial overgrowth. In this work we apply unsupervised machine learning techniques to analyze hydrogen breath test datasets. We propose a method that uses 26 internal cluster validation measures to determine a suitable number of clusters. In an induced external validation step we use a predefined categorization proposed by a medical expert. The results indicate that the majority of the considered internal validation indexes was not able to produce a reasonable clustering. Considering a predefined categorization performed by a medical expert, a novel shape-based method obtained the highest external validation measure in terms of adjusted rand index. The predefined clusterings constitute the basis of a supervised machine learning step that is part of our ongoing research.

摘要

氢气呼气试验是一种成熟的方法,可帮助诊断功能性肠病,如碳水化合物吸收不良或小肠细菌过度生长。在这项工作中,我们应用无监督机器学习技术来分析氢气呼气试验数据集。我们提出了一种使用 26 种内部聚类验证指标来确定合适聚类数的方法。在诱导的外部验证步骤中,我们使用医学专家提出的预定义分类。结果表明,大多数考虑的内部验证指标都无法产生合理的聚类。考虑到医学专家预先设定的分类,一种新的基于形状的方法在调整后的兰德指数方面获得了最高的外部验证度量。预定义的聚类构成了我们正在进行的研究中监督机器学习步骤的基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验