Suppr超能文献

全着丝粒植物中的减数分裂进程与重组:已知情况有哪些?

Meiosis Progression and Recombination in Holocentric Plants: What Is Known?

作者信息

Hofstatter Paulo G, Thangavel Gokilavani, Castellani Marco, Marques André

机构信息

Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.

出版信息

Front Plant Sci. 2021 Apr 22;12:658296. doi: 10.3389/fpls.2021.658296. eCollection 2021.

Abstract

Differently from the common monocentric organization of eukaryotic chromosomes, the so-called holocentric chromosomes present many centromeric regions along their length. This chromosomal organization can be found in animal and plant lineages, whose distribution suggests that it has evolved independently several times. Holocentric chromosomes present an advantage: even broken chromosome parts can be correctly segregated upon cell division. However, the evolution of holocentricity brought about consequences to nuclear processes and several adaptations are necessary to cope with this new organization. Centromeres of monocentric chromosomes are involved in a two-step cohesion release during meiosis. To deal with that holocentric lineages developed different adaptations, like the chromosome remodeling strategy in or the inverted meiosis in plants. Furthermore, the frequency of recombination at or around centromeres is normally very low and the presence of centromeric regions throughout the entire length of the chromosomes could potentially pose a problem for recombination in holocentric organisms. However, meiotic recombination happens, with exceptions, in those lineages in spite of their holocentric organization suggesting that the role of centromere as recombination suppressor might be altered in these lineages. Most of the available information about adaptations to meiosis in holocentric organisms is derived from the animal model . As holocentricity evolved independently in different lineages, adaptations observed in probably do not apply to other lineages and very limited research is available for holocentric plants. Currently, we still lack a holocentric model for plants, but good candidates may be found among Cyperaceae, a large angiosperm family. Besides holocentricity, chiasmatic and achiasmatic inverted meiosis are found in the family. Here, we introduce the main concepts of meiotic constraints and adaptations with special focus in meiosis progression and recombination in holocentric plants. Finally, we present the main challenges and perspectives for future research in the field of chromosome biology and meiosis in holocentric plants.

摘要

与真核生物染色体常见的单着丝粒组织不同,所谓的全着丝粒染色体在其长度上有许多着丝粒区域。这种染色体组织在动植物谱系中都能找到,其分布表明它已经独立进化了好几次。全着丝粒染色体有一个优势:即使染色体部分断裂,在细胞分裂时也能正确分离。然而,全着丝粒的进化给核过程带来了影响,需要一些适应性变化来应对这种新的组织形式。单着丝粒染色体的着丝粒在减数分裂过程中参与两步黏连释放。为了应对这一情况,全着丝粒谱系发展出了不同的适应性变化,比如[具体物种]中的染色体重塑策略或植物中的反向减数分裂。此外,着丝粒处或其周围的重组频率通常非常低,而染色体全长都存在着丝粒区域可能会给全着丝粒生物的重组带来潜在问题。然而,尽管这些谱系具有全着丝粒组织,但减数分裂重组仍会发生,这表明在这些谱系中着丝粒作为重组抑制因子的作用可能会发生改变。关于全着丝粒生物减数分裂适应性的大部分现有信息都来自动物模型[具体物种]。由于全着丝粒在不同谱系中是独立进化的,在[具体物种]中观察到的适应性变化可能不适用于其他谱系,而关于全着丝粒植物的研究非常有限。目前,我们仍然缺乏植物全着丝粒模型,但在莎草科(一个大型被子植物科)中可能会找到合适的候选物种。除了全着丝粒外,该科还存在交叉和非交叉反向减数分裂。在这里,我们介绍减数分裂限制和适应性的主要概念,特别关注全着丝粒植物减数分裂进程和重组。最后,我们提出了全着丝粒植物染色体生物学和减数分裂领域未来研究的主要挑战和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccdf/8100227/acebe5ebb97e/fpls-12-658296-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验