Suppr超能文献

Impulse response function for Brownian motion.

作者信息

Makris Nicos

机构信息

Dept. of Civil and Environmental Engineering, Southern Methodist University, Dallas, Texas 75276, USA.

出版信息

Soft Matter. 2021 Jun 2;17(21):5410-5426. doi: 10.1039/d1sm00380a.

Abstract

Motivated from the central role of the mean-square displacement and its second time-derivative - that is the velocity autocorrelation function in the description of Brownian motion and its implications to microrheology, we revisit the physical meaning of the first time-derivative of the mean-square displacement of Brownian particles. By employing a rheological analogue for Brownian motion, we show that the time-derivative of the mean-square displacement of Brownian microspheres with mass m and radius R immersed in any linear, isotropic viscoelastic material is identical to , where h(t) is the impulse response function (strain history γ(t), due to an impulse stress τ(t) = δ(t - 0)) of a rheological network that is a parallel connection of the linear viscoelastic material with an inerter with distributed inertance . The impulse response function of the viscoelastic material-inerter parallel connection derived in this paper at the stress-strain level of the rheological analogue is essentially the response function of the Brownian particles expressed at the force-displacement level by Nishi et al. after making use of the fluctuation-dissipation theorem. By employing the viscoelastic material-inerter rheological analogue we derive the mean-square displacement and its time-derivatives of Brownian particles immersed in a viscoelastic material described with a Maxwell element connected in parallel with a dashpot and we show that for Brownian motion of microparticles immersed in such fluid-like materials, the impulse response function h(t) maintains a finite constant value in the long term.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验