Suppr超能文献

理解使用机器学习模型对焦虑障碍进行诊断的临床生物标志物的重要性。

Understanding importance of clinical biomarkers for diagnosis of anxiety disorders using machine learning models.

机构信息

Erasmus University, Rotterdam, Netherlands.

Department of Operations Research & Quantitative Analysis, Institute of Agri-Business Management, Swami Keshwanand Rajasthan Agricultural University, Bikaner, Rajasthan, India.

出版信息

PLoS One. 2021 May 10;16(5):e0251365. doi: 10.1371/journal.pone.0251365. eCollection 2021.

Abstract

Anxiety disorders are a group of mental illnesses that cause constant and overwhelming feelings of anxiety and fear. Excessive anxiety can make an individual avoid work, school, family get-togethers, and other social situations that in turn might amplify these symptoms. According to the World Health Organization (WHO), one in thirteen persons globally suffers from anxiety. It is high time to understand the roles of various clinical biomarker measures that can diagnose the types of anxiety disorders. In this study, we apply machine learning (ML) techniques to understand the importance of a set of biomarkers with four types of anxiety disorders-Generalized Anxiety Disorder (GAD), Agoraphobia (AP), Social Anxiety Disorder (SAD) and Panic Disorder (PD). We used several machine learning models and extracted the variable importance contributing to a type of anxiety disorder. The study uses a sample of 11,081 Dutch citizens' data collected by the Lifelines, Netherlands. The results show that there are significant and low correlations among GAD, AP, PD and SAD and we extracted the variable importance hierarchy of biomarkers with respect to each type of anxiety disorder which will be helpful in designing the experimental setup for clinical trials related to influence of biomarkers on type of anxiety disorder.

摘要

焦虑症是一组精神疾病,会导致持续且强烈的焦虑和恐惧。过度的焦虑会使个体逃避工作、学校、家庭聚会和其他社交场合,而这些情况反过来又可能加剧这些症状。根据世界卫生组织(WHO)的数据,全球每 13 人中就有 1 人患有焦虑症。现在是时候了解可以诊断各种焦虑症的各种临床生物标志物测量的作用了。在这项研究中,我们应用机器学习(ML)技术来了解一组生物标志物在四种焦虑症(广泛性焦虑症(GAD)、广场恐惧症(AP)、社交焦虑症(SAD)和恐慌症(PD)中的重要性。我们使用了几种机器学习模型,并提取了对一种焦虑症有贡献的变量重要性。该研究使用了荷兰生命线项目收集的 11081 名荷兰公民的数据样本。结果表明,GAD、AP、PD 和 SAD 之间存在显著且低度的相关性,我们提取了与每种焦虑症相关的生物标志物变量重要性的层次结构,这将有助于设计与生物标志物对焦虑症类型的影响相关的临床试验的实验设置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f561/8109802/715544e4ff0a/pone.0251365.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验