Suppr超能文献

基于机器学习的广泛性焦虑症自然病程多变量预测模型的开发。

Development of a machine learning-based multivariable prediction model for the naturalistic course of generalized anxiety disorder.

作者信息

Basterfield Candice, Newman Michelle G

机构信息

Pennsylvania State University, USA.

Pennsylvania State University, USA.

出版信息

J Anxiety Disord. 2025 Mar;110:102978. doi: 10.1016/j.janxdis.2025.102978. Epub 2025 Jan 25.

Abstract

BACKGROUND

Generalized Anxiety Disorder (GAD) is a chronic condition. Enabling the prediction of individual trajectories would facilitate tailored management approaches for these individuals. This study used machine learning techniques to predict the recovery of GAD at a nine-year follow-up.

METHOD

The study involved 126 participants with GAD. Various baseline predictors from psychological, social, biological, sociodemographic and health variables were used. Two machine learning models, gradient boosted trees, and elastic nets were compared to predict the clinical course in participants with GAD.

RESULTS

At nine-year follow-up, 95 participants (75.40 %) recovered. Elastic nets achieved a cross-validated area-under-the-receiving-operator-characteristic-curve (AUC) of .81 and a balanced accuracy of 72 % (sensitivity of .70 and specificity of .76). The elastic net algorithm revealed that the following factors were highly predictive of nonrecovery at follow-up: higher depressed affect, experiencing daily discrimination, more mental health professional visits, and more medical professional visits. The following variables predicted recovery: having some college education or higher, older age, more friend support, higher waist-to-hip ratio, and higher positive affect.

CONCLUSIONS

There was acceptable performance in predicting recovery or nonrecovery at a nine-year follow-up. This study advances research on GAD outcomes by understanding predictors associated with recovery or nonrecovery. Findings can potentially inform more targeted preventive interventions, ultimately improving care for individuals with GAD. This work is a critical first step toward developing reliable and feasible machine learning-based predictions for applications to GAD.

摘要

背景

广泛性焦虑障碍(GAD)是一种慢性疾病。能够预测个体病程轨迹将有助于为这些患者制定个性化的管理方法。本研究使用机器学习技术预测广泛性焦虑障碍患者在九年随访期内的康复情况。

方法

该研究纳入了126名广泛性焦虑障碍患者。使用了来自心理、社会、生物学、社会人口统计学和健康变量的各种基线预测因素。比较了两种机器学习模型,即梯度提升树模型和弹性网络模型,以预测广泛性焦虑障碍患者的临床病程。

结果

在九年随访期时,95名患者(75.40%)康复。弹性网络模型的交叉验证受试者工作特征曲线下面积(AUC)为0.81,平衡准确率为72%(敏感性为0.70,特异性为0.76)。弹性网络算法显示,以下因素对随访期内未康复具有高度预测性:更高的抑郁情绪、遭受日常歧视、更多次的心理健康专业就诊和更多次的医疗专业就诊。以下变量预测康复情况:接受过一些大学或更高水平教育、年龄较大、更多的朋友支持、更高的腰臀比以及更高的积极情绪。

结论

在预测九年随访期内的康复或未康复情况方面,模型表现良好。本研究通过了解与康复或未康复相关的预测因素,推进了对广泛性焦虑障碍预后的研究。研究结果可能为更有针对性的预防干预提供依据,最终改善对广泛性焦虑障碍患者的护理。这项工作是朝着开发可靠且可行的基于机器学习的预测方法以应用于广泛性焦虑障碍迈出的关键第一步。

相似文献

9
The generalized anxiety spectrum: prevalence, onset, course and outcome.广泛性焦虑谱系:患病率、起病、病程及转归
Eur Arch Psychiatry Clin Neurosci. 2009 Feb;259(1):37-45. doi: 10.1007/s00406-008-0832-9. Epub 2008 Jun 24.

本文引用的文献

4
9
Implementing machine learning in medicine.在医学中实施机器学习。
CMAJ. 2021 Aug 30;193(34):E1351-E1357. doi: 10.1503/cmaj.202434. Epub 2021 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验