Neuroview Technology, United States.
Department of Neurology and Neurosurgery, NYU Langone School of Medicine, New York, United States.
J Neurosci Methods. 2021 Jul 1;358:109220. doi: 10.1016/j.jneumeth.2021.109220. Epub 2021 May 7.
Many electroencephalography (EEG) based seizure detection paradigms have been developed and validated over the last two decades. The majority of clinical approaches use scalp or intracranial EEG electrodes. Scalp EEG is limited by patient discomfort and short duration of useful EEG signals. Intracranial EEG involves an invasive surgical procedure associated with significant risk making it unsuitable for widespread use as a practical clinical biometric. A less invasive EEG monitoring approach, that is between invasive intracranial procedures and noninvasive methods, would fill the need of a safe, accurate, chronic (ultra-long term) and objective seizure detection method. We present validation of a continuous EEG seizure detection paradigm using human single-channel EEG recordings from subcutaneously placed electrodes that could be used to fulfill this need.
Ten-minute long sleep, awake and ictal EEG epochs obtained from 21 human subjects with subscalp electrodes and validated against simultaneous iEEG recordings were analyzed by three experienced clinical neurophysiologists. The 201subscalp EEG time series epochs where classified as diagnostic for awake, asleep, or seizure by the clinicians who were blinded to all other information. Seventy of the epochs were classified in this way as representing seizure activity. A subject specific seizure detection algorithm was trained and then evaluated offline for each patient in the data set using the expert consensus classification as the gold standard.
The average seizure detection performance of the algorithm across 21 subjects exceeded 90 % accuracy: 97 % sensitivity, 91 % specificity, and 93 % accuracy. For 19 of 21 patient datasets the algorithm achieved 100 % sensitivity. For 15 of 21 patients, the algorithm achieved 100 % specificity. For 13 of 21 patients the algorithm achieved 100 % accuracy.
No comparable published methods are available for subgaleal EEG seizure detection.
These findings suggest that a simple seizure detection algorithm using subcutaneous EEG signals could provide sufficient accuracy and clinical utility for use in a low power, long-term subcutaneous brain monitoring device. Such a device would fill a need for a large number of people with epilepsy who currently have no means for accurately quantifying their seizures thereby providing important information to healthcare providers not currently available.
在过去的二十年中,已经开发和验证了许多基于脑电图(EEG)的癫痫发作检测范式。大多数临床方法都使用头皮或颅内 EEG 电极。头皮 EEG 受到患者不适和有用 EEG 信号持续时间短的限制。颅内 EEG 涉及到一种有创的手术过程,风险很大,因此不适合作为一种实用的临床生物计量学方法广泛使用。一种介于有创颅内手术和非侵入性方法之间的侵入性较小的 EEG 监测方法,将满足一种安全、准确、慢性(超长)和客观的癫痫发作检测方法的需求。我们提出了一种使用皮下放置电极的人类单通道 EEG 记录进行连续 EEG 癫痫发作检测范式的验证,该方法可以满足这一需求。
从 21 名接受皮下电极的人类受试者中获取 10 分钟长的睡眠、清醒和发作期 EEG 时段,并与同时进行的颅内 EEG 记录进行验证,由三位经验丰富的临床神经生理学家进行分析。201 个皮下 EEG 时间序列时段由临床医生分类为清醒、睡眠或癫痫发作,这些临床医生对所有其他信息均不知情。其中 70 个时段被分类为代表癫痫发作活动。针对每位患者的数据集,使用专家共识分类作为金标准,为每个患者的数据集训练和离线评估了一种特定于患者的癫痫发作检测算法。
在 21 名受试者中,该算法的平均癫痫发作检测性能超过 90%的准确率:97%的敏感性、91%的特异性和 93%的准确性。对于 21 个患者数据集的 19 个,该算法达到了 100%的敏感性。对于 21 个患者中的 15 个,该算法达到了 100%的特异性。对于 21 个患者中的 13 个,该算法达到了 100%的准确性。
没有可用于皮下 EEG 癫痫发作检测的可比已发表方法。
这些发现表明,使用皮下 EEG 信号的简单癫痫发作检测算法可以提供足够的准确性和临床实用性,用于低功耗、长期皮下脑监测设备。这样的设备将满足目前没有准确量化癫痫发作的大量癫痫患者的需求,为医疗保健提供者提供当前无法获得的重要信息。