Suppr超能文献

利用 EEG 功率谱特征进行想象语音分类。

Imagined speech classification exploiting EEG power spectrum features.

机构信息

Department of Electrical and Electronic Engineering, University of Chittagong, Chittagong, 4331, Bangladesh.

出版信息

Med Biol Eng Comput. 2024 Aug;62(8):2529-2544. doi: 10.1007/s11517-024-03083-2. Epub 2024 Apr 18.

Abstract

Imagined speech recognition has developed as a significant topic of research in the field of brain-computer interfaces. This innovative technique has great promise as a communication tool, providing essential help to those with impairments. An imagined speech recognition model is proposed in this paper to identify the ten most frequently used English alphabets (e.g., A, D, E, H, I, N, O, R, S, T) and numerals (e.g., 0 to 9). A novel electroencephalogram (EEG) dataset was created by measuring the brain activity of 30 people while they imagined these alphabets and digits. As part of signal preprocessing, EEG signals are filtered before extracting delta, theta, alpha, and beta band power features. These features are used as input for classification using support vector machines, k-nearest neighbors, and random forest (RF) classifiers. It is identified that the RF classifier outperformed the others in terms of classification accuracy. Classification accuracies of 99.38% and 95.39% were achieved at the coarse-level and fine-level, respectively with the RF classifier. From our study, it is also revealed that the beta frequency band and the frontal lobe of the brain played crucial roles in imagined speech recognition. Furthermore, a comparative analysis against state-of-the-art techniques is conducted to demonstrate the efficacy of our proposed model.

摘要

想象中的语音识别已经成为脑机接口领域的一个重要研究课题。这项创新技术作为一种交流工具具有巨大的潜力,可以为有障碍的人提供重要的帮助。本文提出了一种想象中的语音识别模型,用于识别最常用的十个英语字母(如 A、D、E、H、I、N、O、R、S 和 T)和数字(如 0 到 9)。通过测量 30 个人想象这些字母和数字时的大脑活动,创建了一个新的脑电图(EEG)数据集。在提取 delta、theta、alpha 和 beta 波段功率特征之前,对 EEG 信号进行滤波作为信号预处理的一部分。这些特征被用作支持向量机、k-最近邻和随机森林(RF)分类器的分类输入。结果表明,RF 分类器在分类准确性方面优于其他分类器。RF 分类器在粗级和细级的分类准确率分别达到了 99.38%和 95.39%。通过我们的研究还揭示了在想象中的语音识别中,β 频带和大脑额叶起着至关重要的作用。此外,还进行了与最先进技术的对比分析,以证明我们提出的模型的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验