Centre Georges François Leclerc (CGFL)-Dijon, France.
FEMTO-ST Institute-Optics Department-UMR 6174-University of Bourgogne Franche-Comté-CNRS-Besançon, France.
Phys Med Biol. 2021 May 26;66(11). doi: 10.1088/1361-6560/abffbb.
The concept of a miniaturized inorganic scintillator detector is demonstrated in the analysis of the small static photon fields used in external radiation therapy. Such a detector is constituted by a 0.25 mm diameter and 0.48 mm long inorganic scintillating cell (1.6 × 10cmdetection volume) efficiently coupled to a narrow 125m diameter silica optical fiber using a tiny photonic interface (an optical antenna). The response of our miniaturized scintillator detector (MSD) under 6 MV bremsstrahlung beam of various sizes (from 1 × 1 cmto 4 × 4 cm) is compared to that of two high resolution reference probes, namely, a micro-diamond detector and a dedicated silicon diode. The spurious Cerenkov signal transmitted through our bare detector is rejected with a basic spectral filtering. The MSD shows a linear response regarding the dose, a repeatability within 0.1% and a radial directional dependence of 0.36% (standard deviations). Beam profiling at 5 cm depth with the MSD and the micro-diamond detector shows a mismatch in the measurement of the full widths at 80% and 50% of the maximum which does not exceed 0.25 mm. The same difference range is found between the micro-diamond detector and a silicon diode. The deviation of the percentage depth dose between the MSD and micro-diamond detector remains below 2.3% within the first fifteen centimeters of the decay region for field sizes of 1 × 1 cm, 2 × 2 cmand 3 × 3 cm(0.76% between the silicon diode and the micro-diamond in the same field range). The 2D dose mapping of a 0.6 × 0.6 cmphoton field evidences the strong 3D character of the radiation-matter interaction in small photon field regime. From a beam-probe convolution theory, we predict that our probe overestimates the beam width by 0.06%, making our detector a right compromise between high resolution, compactness, flexibility and ease of use. The MSD overcomes problem of volume averaging, stem effects, and despite its water non-equivalence it is expected to minimize electron fluence perturbation due to its extreme compactness. Such a detector thus has the potential to become a valuable dose verification tool in small field radiation therapy, and by extension in Brachytherapy, FLASH-radiotherapy and microbeam radiation therapy.
微型无机闪烁体探测器的概念在分析外部放射治疗中使用的小静态光子场中得到了验证。这种探测器由一个 0.25 毫米直径和 0.48 毫米长的无机闪烁体单元(1.6×10cm^3 的检测体积)组成,通过一个微小的光子接口(一个光天线)与一个直径为 125μm 的窄石英光纤高效耦合。我们的微型闪烁体探测器(MSD)在各种大小的 6MV 韧致辐射束(从 1×1cm 到 4×4cm)下的响应与两个高分辨率参考探头(即微金刚石探测器和专用硅二极管)的响应进行了比较。通过基本的光谱滤波,我们的裸探测器传输的虚假切伦科夫信号被拒绝。MSD 显示出与剂量的线性响应、在 0.1%以内的重复性和 0.36%(标准偏差)的径向方向依赖性。在 5cm 深度用 MSD 和微金刚石探测器进行的束流成型显示出在 80%和 50%最大处的全宽测量之间的不匹配,其不超过 0.25mm。在微金刚石探测器和硅二极管之间也发现了相同的差异范围。在 1×1cm、2×2cm 和 3×3cm 大小的场中,MSD 和微金刚石探测器之间的百分深度剂量偏差在衰减区的前 15 厘米内保持在 2.3%以内(硅二极管和微金刚石在同一范围内的偏差为 0.76%)。在一个 0.6×0.6cm 的光子场的 2D 剂量映射中,证明了在小光子场范围内辐射物质相互作用的强烈 3D 特性。根据束流探头卷积理论,我们预测我们的探头将束宽高估了 0.06%,这使得我们的探测器在高分辨率、紧凑性、灵活性和易用性之间取得了良好的平衡。MSD 克服了体积平均、茎效应的问题,尽管其水等效性不佳,但由于其极度紧凑,预计将最小化电子通量的干扰。因此,这种探测器有可能成为小野放疗、近距离放疗、FLASH 放疗和微束放疗中一种有价值的剂量验证工具。